Publication Cover
Spatial Cognition & Computation
An Interdisciplinary Journal
Volume 20, 2020 - Issue 4
1,394
Views
26
CrossRef citations to date
0
Altmetric
Research Article

Desktop versus immersive virtual environments: effects on spatial learning

ORCID Icon, , , , , ORCID Icon, & show all
Pages 328-363 | Received 10 Dec 2019, Accepted 24 Aug 2020, Published online: 13 Sep 2020

References

  • Balakrishnan, B., & Sundar, S. S. (2011). Where am I? How can I get there? Impact of navigability and narrative transportation on spatial presence. Human–Computer Interaction, 26(3), 161–204. doi:10.1080/07370024.2011.601689
  • Boletsis, C. (2017). The new era of virtual reality locomotion: A systematic literature review of techniques and a proposed typology. Multimodal Technologies and Interaction, 1(4), 24. doi:10.3390/mti1040024
  • Bowman, D. A., Koller, D., & Hodges, L. F. (1997). Travel in immersive virtual environments: An evaluation of viewpoint motion control techniques. In IEEE 1997 Virtual Reality Annual International Symposium: Proceedings, March 1-5, 1997, Albuquerque, New Mexico/sponsored by IEEE Computer Society Technical Committee on Computer Graphics, IEEE Neural Networks Council Virtual Reality Technical Committee (pp. 45–52). Los Alamitos, Calif.: IEEE Computer Society Press. doi:10.1109/VRAIS.1997.583043.
  • Bozgeyikli, E., Raij, A., Katkoori, S., & Dubey, R. (2016). Point & teleport locomotion technique for Virtual reality. In 2016 Annual Symposium on Computer-Human Interaction in Play (CHI PLAY ‘16) (pp. 205–216). New York, NY: ACM. doi:10.1145/2967934.2968105.
  • Buttussi, F., & Chittaro, L. (2018). Effects of different types of virtual reality display on presence and learning in a safety training scenario. IEEE Transactions on Visualization and Computer Graphics, 24(2), 1063–1076. doi:10.1109/TVCG.2017.2653117
  • Cardoso, J. C. S. (2016). Comparison of gesture, gamepad, and gaze-based locomotion for VR worlds. In D. Kranzlmüller (Ed.), Proceedings of the 22nd ACM conference on virtual reality software and technology (pp. 319–320). New York, NY: ACM. doi:10.1145/2993369.2996327
  • Cherep, L. A., Lim, A. F., Kelly, J. W., Acharya, D., Velasco, A., Bustamante, E., … Gilbert, S. B. (2020). Spatial cognitive implications of teleporting through virtual environments. Journal of Experimental Psychology. Applied. Advance online publication. doi:10.1037/xap0000263.
  • Chirico, A., Ferrise, F., Cordella, L., & Gaggioli, A. (2017). Designing Awe in virtual reality: An experimental study. Frontiers in Psychology, 8(2351). doi:10.3389/fpsyg.2017.02351
  • Chirico, A., Yaden, D. B., Riva, G., & Gaggioli, A. (2016). The potential of virtual reality for the investigation of awe. Frontiers in Psychology, 09. doi:10.3389/fpsyg.2016.01766
  • Chrastil, E. R., & Warren, W. H. (2013). Active and passive spatial learning in human navigation: Acquisition of survey knowledge. Journal of Experimental Psychology. Learning, Memory, and Cognition, 39(5), 1520–1537. doi:10.1037/a0032382
  • Chrastil, E. R., & Warren, W. H. (2015). Active and passive spatial learning in human navigation: Acquisition of graph knowledge. Journal of Experimental Psychology. Learning, Memory, and Cognition, 41(4), 1162–1178. doi:10.1037/xlm0000082
  • Christou, C. G., & Bülthoff, H. H. (1999). View dependence in scene recognition after active learning. Memory & Cognition, 27(6), 996–1007. doi:10.3758/BF03201230
  • Coomer, N., Bullard, S., Clinton, W., & Williams-Sanders, B. (2018). Evaluating the effects of four VR locomotion methods: Joystick, arm-cycling, point-tugging, and teleporting. In Proceedings of the 15th ACM Symposium on Applied Perception (pp. 1–8). New York, N.Y.: ACM. doi:10.1145/3225153.3225175.
  • Costello, P. J. (1997). Health and safety issues associated with virtual reality - A review of current literature (Advisory Group on Computer Graphics).
  • Creative Assembly. (2014). Alien: Isolation [Oculus]. Tokyo, Japan: Sega.
  • Dede, C. (2009). Immersive interfaces for engagement and learning. Science (New York, N.Y.), 323(5910), 66–69. doi:10.1126/science.1167311
  • Field, A. P., Miles, J., & Field, Z. (2012). Discovering statistics using R. London, UK: SAGE.
  • Freina, L., & Ott, M. (2015). A literature review on immersive virtual reality in education: State of the art and perspectives. In eLearning and Software for Education (eLSE). Bucharest (Romania).
  • Friedman, A., & Kohler, B. (2003). Bidimensional regression: Assessing the configural similarity and accuracy of cognitive maps and other two-dimensional data sets. Psychological Methods, 8(4), 468–491. doi:10.1037/1082-989X.8.4.468
  • Friedrich, S., Konietschke, F., & Pauly, M. (2018). Analysis of multivariate data and repeated measures designs with the R package MANOVA.RM. arXiv E-prints, arXiv:1801.08002.
  • Frommel, J., Sonntag, S., & Weber, M. (2017). Effects of controller-based locomotion on player experience in a virtual reality exploration game. In Proceedings of the 12th International Conference on the Foundations of Digital Games (pp. 1–6). New York, NY: ACM. doi:10.1145/3102071.3102082.
  • Gallistel, C. R. (1990). The organization of learning. Cambridge, Mass.: MIT Press.
  • Gallistel, C. R., & Matzel, L. D. (2013). The neuroscience of learning: Beyond the Hebbian synapse. Annual Review of Psychology, 64(1), 169–200. doi:10.1146/annurev-psych-113011-143807
  • Gardony, A. L., Taylor, H. A., & Brunyé, T. T. (2016). Gardony map drawing analyzer: Software for quantitative analysis of sketch maps. Behavior Research Methods, 48(1), 151–177. doi:10.3758/s13428-014-0556-x
  • Gaunet, F., Vidal, M., Kemeny, A., & Berthoz, A. (2001). Active, passive and snapshot exploration in a virtual environment: Influence on scene memory, reorientation and path memory. Cognitive Brain Research, 11(3), 409–420. doi:10.1016/S0926-6410(01)00013-1
  • Gerig, N., Mayo, J., Baur, K., Wittmann, F., Riener, R., & Wolf, P. (2018). Missing depth cues in virtual reality limit performance and quality of three dimensional reaching movements. PloS One, 13(1), e0189275. doi:10.1371/journal.pone.0189275
  • Grechkin, T. Y., & Riecke, B. E. (2014). Re-evaluating benefits of body-based rotational cues for maintaining orientation in virtual environments. In R. Bailey, S. Kuhl, B. J. Mohler, K. Singh, B. Riecke, & S. N. Spencer (Eds.), ACM international conference proceedings series, proceedings, SAP 2014: Vancouver, British Columbia, Canada, August 08-09, 2014 (pp. 99–102). New York, New York: Association for Computing Machinery, Inc. doi:10.1145/2628257.2628275
  • Guna, J., Geršak, G., Humar, I., Krebl, M., Orel, M., Lu, H., & Pogačnik, M. (2019). Virtual reality sickness and challenges behind different technology and content settings. Mobile Networks and Applications, 533(1), 153. doi:10.1007/s11036-019-01373-w
  • Hart, R. A., & Moore, G. T. (1973). The development of spatial cognition: A review. In D. Stea & R. M. Downs (Eds.), Image and environment: Cognitive Mapping and spatial behavior (pp. 246–288). New Brunswick, NJ: AldineTransaction.
  • He, Q., & Mcnamara, T. P. (2017). spatial updating strategy affects the reference frame in path integration. Psychonomic Bulletin & Review. Advance online publication. doi:10.3758/s13423-017-1307-7.
  • Hegarty, M., Crookes, R. D., Dara-Abrams, D., & Shipley, T. F. (2010). Do all science disciplines rely on spatial abilities? Preliminary evidence from self-report questionnaires. In C. Hölscher, T. F. Shipley, M. I. Belardinelli, J. A. Bateman, & N. S. Newcombe (Eds.), Lecture notes in computer science, spatial cognition VII: International conference, spatial cognition 2010, Mt. Hood/ Portland,OR, USA, August 15-19, 2010. Proceedings (Vol. 6222, pp. 85–94). Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-14749-4_10
  • Hochmair, H., & Frank, A. U. (2000). Influence of estimation errors on wayfinding-decisions in unknown street networks – Analyzing the least-angle strategy. Spatial Cognition and Computation, 2(4), 283–313. doi:10.1023/A:1015566423907
  • Holmes, C. A., Marchette, S. A., & Newcombe, N. S. (2017). Multiple views of space: Continuous visual flow enhances small-scale spatial learning. Journal of Experimental Psychology. Learning, Memory, and Cognition, 43(6), 851–861. doi:10.1037/xlm0000346
  • Jacob Habgood, M. P., Moore, D., Wilson, D., & Alapont, S. (2018). Rapid, continuous movement between nodes as an accessible virtual reality locomotion technique. In IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (pp. 371–378). doi:10.1109/VR.2018.8446130.
  • Jerald, J. (2016). The VR book: Human-centered design for virtual reality. New York, NY: Morgan & Claypool Publishers.
  • Karaseitanidis, I., Amditis, A., Patel, H., Sharples, S., Bekiaris, E., Bullinger, A., & Tromp, J. (2006). Evaluation of virtual reality products and applications from individual, organizational and societal perspectives—The “VIEW” case study. International Journal of Human-computer Studies, 64(3), 251–266. doi:10.1016/j.ijhcs.2005.08.013
  • Klatzky, R. L. (1998). Allocentric and egocentric spatial representations: Definitions, distinctions, and interconnections. In C. Freksa, C. Habel, & K. F. Wender (Eds.), Spatial cognition (pp. 1–17). Berlin, Heidelberg: Springer. doi:10.1007/3-540-69342-4_1
  • Klippel, A., Zhao, J., Oprean, D., Wallgrün, J. O., Stubbs, C., La Femina, P., & Jackson, K. L. (2019). The value of being there: Toward a science of immersive virtual field trips. Virtual Reality, 1(4), 24. https://doi.org/10.1007/s10055-019-00418-5
  • Krokos, E., Plaisant, C., & Varshney, A. (2019). Virtual memory palaces: Immersion aids recall. Virtual Reality, 23(1), 1–15. doi:10.1007/s10055-018-0346-3
  • Lan, Y.-J., Chen, N.-S., Li, P., & Grant, S. (2015). Embodied cognition and language learning in virtual environments. Educational Technology Research and Development, 63(5), 639–644. doi:10.1007/s11423-015-9401-x
  • Lan, Y.-J., Fang, S.-Y., Legault, J., & Li, P. (2015). Second language acquisition of Mandarin Chinese vocabulary: Context of learning effects. Educational Technology Research and Development, 63(5), 671–690. doi:10.1007/s11423-015-9380-y
  • Langbehn, E., Lubos, P., & Steinicke, F. (2018). Evaluation of locomotion techniques for room-scale VR. In S. Richir (Ed.), ICPS: ACM international conference proceeding series, Proceedings of the virtual reality international conference - Laval virtual (pp. 1–9). New York, NY: ACM. doi:10.1145/3234253.3234291
  • Legault, J., Zhao, J., Chi, Y.-A., Chen, W., Klippel, A., & Li, P. (2019). Immersive virtual reality as an effective tool for second language vocabulary learning. Languages, 4(1), 13. doi:10.3390/languages4010013
  • Leppink, J., Paas, F., van der Vleuten, C. P. M., van Gog, T., & van Merriënboer, J. J. G. (2013). Development of an instrument for measuring different types of cognitive load. Behavior Research Methods, 45(4), 1058–1072. doi:10.3758/s13428-013-0334-1
  • Li, H., & Giudice, N. A. (2013). The effects of immersion and body-based rotation on learning multi-level indoor virtual environments. In M. Tomko, S. Bell, & K.-J. Li (Eds.), ACM international conference proceedings series, ISA 2013: Proceedings of the Fifth ACM SIGSPATIAL international workshop on indoor spatial awareness: November 5, 2013, Orlando, Florida, USA (pp. 8–15). New York, NY: Association for Computing Machinery. doi:10.1145/2533810.2533811
  • Lugrin, J.-L., Cavazza, M., Charles, F., Le Renard, M., Freeman, J., & Lessiter, J. (2013). Immersive FPS games: User experience and performance. In ImmersiveMe’13: Proceedings of the 2nd International Workshop on Immersive Media Experiences: October 22, 2013, Barcelona, Spain (pp. 7–12). New York: Association for Computing Machinery. doi:10.1145/2512142.2512146.
  • Makransky, G., Terkildsen, T. S., & Mayer, R. E. (2017). Adding immersive virtual reality to a science lab simulation causes more presence but less learning. Learning and Instruction, 60, 225–236. https://doi.org/10.1016/j.learninstruc.2017.12.007
  • McCullough, M., Xu, H., Michelson, J., Jackoski, M., Pease, W., Cobb, W., … Williams, B. (2015). Myo arm: Swinging to explore a VE. In L. Trutoiu, M. Geuss, S. Kuhl, B. Sanders, R. Mantiuk, & S. N. Spencer (Eds.), Proceedings, SAP 2015: ACM SIGGRAPH symposium on applied perception: Tübingen, Germany, September 13- 14,2015 (pp. 107–113). New York, NY: The Association for Computing Machinery, Inc. doi:10.1145/2804408.2804416
  • McIntire, J. P., & Liggett, K. K. (2014). The (possible) utility of stereoscopic 3D displays for information visualization: The good, the bad, and the ugly. In 2014 IEEE VIS International Workshop on 3DVis (3DVis) (pp. 1–9). Paris: IEEE. doi:10.1109/3DVis.2014.7160093.
  • Mestre, D. R. (2005). Immersion and Presence. Retrieved from http://www.ism.univmed.fr/mestre/projects/virtual%20reality/Pres_2005.pdf
  • Mikkola, M., Boev, A., & Gotchev, A. (2010). Relative importance of depth cues on portable autostereoscopic display. In I. Curcio & N. Venkatasubramanian (Eds.), MoViD ‘10: Proceedings of the 2010 ACM workshop on mobile video delivery: October 25, 2010, Firenze, Italy (pp. 63). New York, N.Y.: Association for Computing Machinery. doi:10.1145/1878022.1878038
  • Moss, J. D., & Muth, E. R. (2011). Characteristics of head-mounted displays and their effects on simulator sickness. Human Factors: The Journal of the Human Factors and Ergonomics Society, 53(3), 308–319. doi:10.1177/0018720811405196
  • Mou, W., & Wang, L. (2015). Piloting and path integration within and across boundaries. Journal of Experimental Psychology. Learning, Memory, and Cognition, 41(1), 220–234. doi:10.1037/xlm0000032
  • Nardini, M., Jones, P., Bedford, R., & Braddick, O. (2008). Development of cue integration in human navigation. Current Biology: CB, 18(9), 689–693. doi:10.1016/j.cub.2008.04.021
  • Nawrot, M. (2003). Depth from motion parallax scales with eye movement gain. Journal of Vision, 3(11), 841–851. doi:10.1167/3.11.17
  • Nguyen-Vo, T., Riecke, B. E., & Stuerzlinger, W. (2018). Simulated reference frame: A cost-effective solution to improve spatial orientation in VR. In IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (pp. 415–422). doi:10.1109/VR.2018.8446383.
  • Oprean, D., Simpson, M., & Klippel, A. (2017). Collaborating remotely: An evaluation of immersive capabilities on spatial experiences and team membership. International Journal of Digital Earth, 11(4), 420–436. doi:10.1080/17538947.2017.1381191
  • Paas, F. G. W. C., & van Merriënboer, J. J. G. (1994). Instructional control of cognitive load in the training of complex cognitive tasks. Educational Psychology Review, 6(4), 351–371. doi:10.1007/BF02213420
  • Paris, R., Klag, J., Rajan, P., Buck, L., McNamara, T. P., & Bodenheimer, B. (2019). How Video Game locomotion methods affect navigation in virtual environments. In SAP ‘19 ACM Symposium on Applied Perception 2019 (pp. 1–7). doi:10.1145/3343036.3343131.
  • Porcino, T. M., Clua, E., Trevisan, D., Vasconcelos, C. N., & Valente, L. (2017). Minimizing cyber sickness in head mounted display systems: Design guidelines and applications. In IEEE 5th International Conference on Serious Games and Applications for Health (SeGAH) (pp. 1–6). doi:10.1109/SeGAH.2017.7939283.
  • Quesnel, D., & Riecke, B. E. (2017). Awestruck: Natural interaction with virtual reality on eliciting awe. In B. Thomas, R. J. Teather, & M. Marchal (Eds.), 2017 IEEE symposium on 3D user interfaces (3DUI): Proceedings: March 18- 19,2017, Los Angeles, CA, USA (pp. 205–206). Piscataway, NJ: IEEE. doi:10.1109/3DUI.2017.7893343
  • Ragan, E. D. (2010). The effects of higher levels of immersion on procedure memorization performance and implications for educational virtual environments. Presence: Teleoperators and Virtual Environments, 19(6), 527–543. doi:10.1162/pres_a_00016
  • Ragan, E. D., Kopper, R., Schuchardt, P., & Bowman, D. A. (2012). Studying the effects of stereo, head tracking, and field of regard on a small-scale spatial judgment task. IEEE Transactions on Visualization and Computer Graphics, 19(5), 886–896. doi:10.1109/TVCG.2012.163
  • Razzaque, S., Kohn, Z., & Whitton, M. C. (2001). Redirected walking.  In Proceedings of eurographics (pp. 289–294). Manchester, UK: Eurographics Association.
  • Rebenitsch, L., & Owen, C. (2016). Review on cybersickness in applications and visual displays. Virtual Reality, 20(2), 101–125. doi:10.1007/s10055-016-0285-9
  • Richardson, A. E., Montello, D. R., & Hegarty, M. (1999). Spatial knowledge acquisition from maps and from navigation in real and virtual environments. Memory & Cognition, 27(4), 741–750. doi:10.3758/BF03211566
  • Riecke, B. E., Bodenheimer, B., McNamara, T. P., Williams, B., Peng, P., & Feuereissen, D. (2010). Do we need to walk for effective virtual reality navigation? Physical rotations alone may suffice. In C. Hölscher, T. F. Shipley, M. I. Belardinelli, J. A. Bateman, & N. S. Newcombe (Eds.), Lecture notes in computer science, spatial cognition VII: International conference, spatial cognition 2010, Mt. Hood/ Portland,OR, USA, August 15-19, 2010. Proceedings (Vol. 6222, pp. 234–247). Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-14749-4_21
  • Rousset, T., Bourdin, C., Goulon, C., Monnoyer, J., & Vercher, J.-L. (2018). Misperception of egocentric distances in virtual environments: More a question of training than a technological issue? Displays, 52, 8–20. doi:10.1016/j.displa.2018.02.004
  • Ruddle, R. A., Howes, A., Payne, S. J., & Jones, D. M. (2000). The effects of hyperlinks on navigation in virtual environments. International Journal of Human-computer Studies, 53(4), 551–581. doi:10.1006/ijhc.2000.0402
  • Ruddle, R. A., & Lessels, S. (2006a). Three levels of metric for evaluating wayfinding. Presence: Teleoperators and Virtual Environments, 15(6), 637–654. doi:10.1162/pres.15.6.637
  • Ruddle, R. A., & Lessels, S. (2006b). For efficient navigational search, humans require full physical movement, but not a rich visual scene. Psychological Science, 17(6), 460–465. doi:10.1111/j.1467-9280.2006.01728.x
  • Ruddle, R. A., Payne, S. J., & Jones, D. M. (1997). Navigating buildings in “Desk-Top” virtual environments: Experimental investigations using extended navigational experience. Journal of Experimental Psychology. Applied, 3(2), 143–159.
  • Ruddle, R. A., Payne, S. J., & Jones, D. M. (1999). Navigating large-scale virtual environments: What differences occur between helmet-mounted and desk-top displays? Presence: Teleoperators and Virtual Environments, 8(2), 157–168. doi:10.1162/105474699566143
  • Ruddle, R. A., & Péruch, P. (2004). Effects of proprioceptive feedback and environmental characteristics on spatial learning in virtual environments. International Journal of Human-computer Studies, 60(3), 299–326. doi:10.1016/j.ijhcs.2003.10.001
  • Ruddle, R. A., Volkova, E., & Bülthoff, H. H. (2011). Walking improves your cognitive map in environments that are large-scale and large in extent. ACM Transactions on Computer-Human Interaction, 18(2), 1–22. doi:10.1145/1970378.1970384
  • Ruddle, R. A., Volkova, E., Mohler, B., & Bülthoff, H. H. (2011). The effect of landmark and body-based sensory information on route knowledge. Memory & Cognition, 39(4), 686–699. doi:10.3758/s13421-010-0054-z
  • Sakata, S., Grove, P. M., Hill, A., Watson, M. O., & Stevenson, A. R. L. (2017). Impact of simulated three-dimensional perception on precision of depth judgements, technical performance and perceived workload in laparoscopy. The British Journal of Surgery, 104(8), 1097–1106. doi:10.1002/bjs.10528
  • Santos, B. S., Dias, P., Pimentel, A., Baggerman, J.-W., Ferreira, C., Silva, S., & Madeira, J. (2009). Head-mounted display versus desktop for 3D navigation in virtual reality: A user study. Multimedia Tools and Applications, 41(1), 161–181. doi:10.1007/s11042-008-0223-2
  • Schinazi, V. R., Nardi, D., Newcombe, N. S., Shipley, T. F., & Epstein, R. A. (2013). Hippocampal size predicts rapid learning of a cognitive map in humans. Hippocampus, 23(6), 515–528. doi:10.1002/hipo.22111
  • Sharples, S., Cobb, S., Moody, A., & Wilson, J. R. (2008). Virtual reality induced symptoms and effects (VRISE): Comparison of head mounted display (HMD), desktop and projection display systems. Displays, 29(2), 58–69. doi:10.1016/j.displa.2007.09.005
  • Shin, D.-H. (2017). The role of affordance in the experience of virtual reality learning: Technological and affective affordances in virtual reality. Telematics and Informatics, 34(8), 1826–1836. doi:10.1016/j.tele.2017.05.013
  • Siegel, A. W., & White, S. H. (1975). The development of spatial representations of large-scale environments. In H. W. Reese (Ed.), Advances in child development and behavior (Vol. 10, pp. 9–55). Burlington, UK: Elsevier. doi:10.1016/S0065-2407(08)60007-5
  • Slater, M. (2003). A note on presence terminology. Presence Connect, 3(3), 1–5.
  • Slater, M., & Wilbur, S. (1997). A Framework for Immersive Virtual Environments (FIVE): Speculations on the role of presence in virtual environments. Presence: Teleoperators and Virtual Environments, 6(6), 603–616. doi:10.1162/pres.1997.6.6.603
  • Sundar, S. S., Tamul, D. J., & Wu, M. (2014). Capturing “cool”: Measures for assessing coolness of technological products. International Journal of Human-computer Studies, 72(2), 169–180. doi:10.1016/j.ijhcs.2013.09.008
  • Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257–285. doi:10.1207/s15516709cog1202_4
  • Sweller, J., van Merrienboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10(3), 251–296. doi:10.1023/A:1022193728205
  • Taylor, T. H. (2010). Ceiling effect. In N. Salkind (Ed.), Encyclopedia of research design (Vol. 2455, pp. 133–134). Teller Road Thousand Oaks,CA: SAGE Publications Inc. doi:10.4135/9781412961288.n44
  • Templeman, J. N., Denbrook, P. S., & Sibert, L. E. (1999). Virtual locomotion: Walking in place through virtual environments. Presence: Teleoperators and Virtual Environments, 8(6), 598–617. doi:10.1162/105474699566512
  • Van Elk, M., Karinen, A., Specker, E., Stamkou, E., & Baas, M. (2016). ‘Standing in Awe’: The effects of awe on body perception and the relation with absorption. Collabra, 2(1), 4. doi:10.1525/collabra.36
  • Waller, D., Loomis, J. M., & Haun, D. B. M. (2004). Body-based senses enhance knowledge of directions in large-scale environments. Psychonomic Bulletin & Review, 11(1), 157–163. doi:10.3758/BF03206476
  • Waller, D., Loomis, J. M., & Steck, S. D. (2003). Inertial cues do not enhance knowledge of environmental layout. Psychonomic Bulletin & Review, 10(4), 987–993. doi:10.3758/BF03196563
  • Weisberg, S. M., & Newcombe, N. S. (2016). How do (some) people make a cognitive map? Routes, places, and working memory. Journal of Experimental Psychology. Learning, Memory, and Cognition, 42(5), 768–785. doi:10.1037/xlm0000200
  • Weisberg, S. M., Schinazi, V. R., Newcombe, N. S., Shipley, T. F., & Epstein, R. A. (2014). Variations in cognitive maps: Understanding individual differences in navigation. Journal of Experimental Psychology. Learning, Memory, and Cognition, 40(3), 669–682. doi:10.1037/a0035261
  • Weißker, T., Kunert, A., Frohlich, B., & Kulik, A. (2018). Spatial updating and simulator sickness during steering and jumping in immersive virtual environments. In 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (pp. 97–104). doi:10.1109/VR.2018.8446620
  • Willemsen, P., Gooch, A. A., Thompson, W. B., & Creem-regehr, S. H. (2008). Effects of stereo viewing conditions on distance perception in virtual environments. Presence: Teleoperators and Virtual Environments, 17(1), 91–101. doi:10.1162/pres.17.1.91
  • Wraga, M., Creem-regehr, S. H., & Proffitt, D. R. (2004). Spatial updating of virtual displays. Memory & Cognition, 32(3), 399–415. doi:10.3758/BF03195834
  • Zhang, L., & Mou, W. (2017). Piloting systems reset path integration systems during position estimation. Journal of Experimental Psychology. Learning, Memory, and Cognition, 43(3), 472–491. doi:10.1037/xlm0000324

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.