0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Exploring the wound-healing potential and seasonal chemical variability of the Formosan Callery pear Pyrus calleryana: implications for therapeutic applications

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 621-633 | Received 19 Oct 2023, Accepted 02 Jul 2024, Published online: 26 Jul 2024

References

  • Almeida L, Oliveira J, Guimarães LH, Carvalho EM, Blackwell JM, Castellucci L. 2015. Wound healing genes and susceptibility to cutaneous leishmaniasis in Brazil: role of COL1A1. Infect Genet Evol. 30:225–229. doi: 10.1016/j.meegid.2014.12.034.
  • Basnet P, Matsushige K, Hase K, Kadota S, Namba T. 1996. Four di-O-caffeoyl quinic acid derivatives from propolis. Potent hepatoprotective ­activity in experimental liver injury models. Biol Pharm Bull. 19(11):1479–1484. doi: 10.1248/bpb.19.1479.
  • Bilia A, Rubio M, Alvarez ML, Morelli I, Gonzalez JM. 1994. New benzyl alcohol glycosides from Pyrus bourgaeana. Planta Med. 60(6):569–571. doi: 10.1055/s-2006-959574.
  • Caley MP, Martins VL, O’Toole EA. 2015. Metalloproteinases and wound healing. Adv Wound Care. 4(4):225–234. doi:10.1089/wound.2014.0581.
  • Challice J, Loeffler R, Williams A. 1980. Structure of calleryanin and its benzylic esters from Pyrus and Prunus. Phytochemistry. 19(11):2435–2437. doi: 10.1016/S0031-9422(00)91043-4.
  • Challice J, Williams A. 1968. Phenolic compounds of the genus Pyrus—I: the occurrence of flavones and phenolic acid derivatives of 3, 4-dihydroxybenzyl alcohol 4-glucoside in Pyrus calleryana. Phytochemistry. 7(1):119–130. doi: 10.1016/S0031-9422(00)88214-X.
  • Chang CL, Lin CS. 2012. Phytochemical composition, antioxidant activity, and neuroprotective effect of Terminalia chebula Retzius extracts. Evid Based Complement Alternat Med. 2012:125247. doi: 10.1155/2012/125247.
  • Cheng F, Shen Y, Mohanasundaram P, Lindström M, Ivaska J, Ny T, Eriksson JE. 2016. Vimentin coordinates fibroblast proliferation and keratinocyte differentiation in wound healing via TGF-β–Slug signaling. Proc Natl Acad Sci U S A. 113(30):E4320–E4327. doi: 10.1073/pnas.1519197113.
  • Cui N, Hu M, Khalil RA. 2017. Biochemical and biological attributes of ­matrix metalloproteinases. Prog Mol Biol Transl Sci. 147:1–73. doi: 10.1016/bs.pmbts.2017.02.005.
  • El-Hawary S, El-Gohary H, Gonaid M, El-Sayed R, Sleem A. 2003. Phytochemical and biological investigation of pentacyclic triterpenes isolated from Pyrus calleryana Decne growing in Egypt. Bull Fac Pharm Cairo Univ. 41:145–157.
  • Fitriana WD, Istiqomah SBT, Ersam T, Fatmawati S. 2018. The relationship of secondary metabolites: a study of Indonesian traditional herbal medicine (Jamu) for post partum maternal care use. AIP Conf Proc. 2049:020096.
  • Hagio M, Sakurai I, Sato S, Kato T, Tabata S, Wada H. 2002. Phosphatidylglycerol is essential for the development of thylakoid membranes in Arabidopsis thaliana. Plant Cell Physiol. 43(12):1456–1464. doi: 10.1093/pcp/pcf185.
  • Hammer KD, Hillwig ML, Neighbors JD, Sim YJ, Kohut ML, Wiemer DF, Wurtele ES, Birt DF. 2008. Pseudohypericin is necessary for the light-activated inhibition of prostaglandin E2 pathways by a 4 component system mimicking an Hypericum perforatum fraction. Phytochemistry. 69(12):2354–2362. doi: 10.1016/j.phytochem.2008.06.010.
  • Huang CY, Lin YT, Kuo HC, Chiou WF, Lee MH. 2017. Compounds isolated from Eriobotrya deflexa leaves protect against ultraviolet radiation B-induced photoaging in human fibroblasts. J Photochem Photobiol B. 175:244–253. doi: 10.1016/j.jphotobiol.2017.08.042.
  • Ibrahim RM, Hammoudi ZM. 2020. Phytochemistry and pharmacological ­activity of pear (Pyrus communis Linn): a review. Plant Arch. 20:7820–7828.
  • Jahed KR, Saini AK, Sherif SM. 2023. Coping with the cold: unveiling cryoprotectants, molecular signaling pathways, and strategies for cold stress resilience. Front Plant Sci. 14:1246093. doi: 10.3389/fpls.2023.1246093.
  • Kirmizibekmez H, Calis I, Perozzo R, Brun R, Dönmez AA, Linden A, Rüedi P, Tasdemir D. 2004. Inhibiting activities of the secondary metabolites of Phlomis brunneogaleata against parasitic protozoa and plasmodial enoyl-ACP reductase, a crucial enzyme in fatty acid biosynthesis. Planta Med. 70(8):711–717. doi: 10.1055/s-2004-827200.
  • Kou X, Chen Q, Li X, Li M, Kan C, Chen B, Zhang Y, Xue Z. 2015. Quantitative assessment of bioactive compounds and the antioxidant activity of 15 jujube cultivars. Food Chem. 173:1037–1044. doi: 10.1016/j.foodchem.2014.10.110.
  • Lai-Cheong JE, McGrath JA. 2017. Structure and function of skin, hair and nails. Medicine. 45(6):347–351. doi: 10.1016/j.mpmed.2017.03.004.
  • Landén NX, Li D, Ståhle M. 2016. Transition from inflammation to proliferation: a critical step during wound healing. Cell Mol Life Sci. 73(20):3861–3885. doi: 10.1007/s00018-016-2268-0.
  • Lee YK, Woo MH, Kim CH, Kim Y, Lee SH, Jeong BS, Chang HW, Son JK. 2007. Two new benzofurans from Gastrodia elata and their DNA topoisomerases I and II inhibitory activities. Planta Med. 73(12):1287–1291. doi: 10.1055/s-2007-981619.
  • Li ZJ, Zheng X, Wan CP, Cai L, Li Y, Huang L, Ding ZT. 2016. A new phenolic compound with antioxidant activity from the branches and leaves of Pyrus pashia. Nat Prod Res. 30(10):1136–1143. doi: 10.1080/14786419.2015.1046130.
  • Lu Y, Ren SB. 2021. Research on Pyrus in Chinese Materia Medica works. Deciduous Fruits. 6:10–15.
  • Mathew-Steiner SS, Roy S, Sen CK. 2021. Collagen in wound healing. Bioengineering. 8(5):5. doi: 10.3390/bioengineering8050063.
  • Mu X, Bellayr I, Pan H, Choi Y, Li Y. 2013. Regeneration of soft tissues is promoted by MMP1 treatment after digit amputation in mice. PLOS One. 8(3):e59105. doi: 10.1371/journal.pone.0059105.
  • Muhammad AA, Pauzi NAS, Arulselvan P, Abas F, Fakurazi S. 2013. In vitro wound healing potential and identification of bioactive compounds from Moringa oleifera Lam. Biomed Res Int. 2013:974580. doi: 10.1155/2013/974580.
  • Nassar MI, Mohamed TK, El-Toumy SA, Gaara AH, El-Kashak WA, Brouard I, El-Kousy SM. 2011. Phenolic metabolites from Pyrus calleryana and evaluation of its free radical scavenging activity. Carbohydr Res. 346(1):64–67. doi: 10.1016/j.carres.2010.11.007.
  • Ohashi H. 1993. Rosaceae. Flora of Taiwan. 2nd ed. Vol. 3. Taipei: Editorial Committee of the Flora of Taiwan; p. 69–157.
  • Pillouer-Prost AL. 2003. Fibroblasts: what’s new in cellular biology? J Cosmet Laser Ther. 5(3–4):232–238. doi: 10.1080/14764170310021869.
  • Ravi D, Rajalekshmy G, Rekha M, Joseph R. 2023. Ascorbic acid-loaded gellan-g-poly (ethylene glycol) methacrylate matrix as a wound-healing ­material. Int J Biol Macromol. 251:126243. doi: 10.1016/j.ijbiomac.2023.126243.
  • Reilly DM, Lozano J. 2021. Skin collagen through the life stages: importance for skin health and beauty. Plast Aesthet Res. 8:2. doi: 10.20517/2347-9264.2020.153.
  • Stefanovic B. 2013. RNA protein interactions governing expression of the most abundant protein in human body, type I collagen. Wiley Interdiscip Rev RNA. 4(5):535–545. doi: 10.1002/wrna.1177.
  • Stevens LJ, Page-McCaw A. 2012. A secreted MMP is required for reepithelialization during wound healing. Mol Biol Cell. 23(6):1068–1079. doi: 10.1091/mbc.E11-09-0745.
  • Teng HY, Zhao R, Shang SP. 2020. The research status of Pyrus calleryana and analysis of its application prospect. J Anhui Agric Sci. 21:6–9.
  • Tracy LE, Minasian RA, Caterson E. 2016. Extracellular matrix and dermal fibroblast function in the healing wound. Adv Wound Care. 5(3):119–136. doi: 10.1089/wound.2014.0561.
  • Trung TN, Shahriar M, Mayland C. 2016. Roles of matrix metalloproteinases in cutaneous wound healing. In: Vlad Adrian A, editor. Wound healing. Rijeka: IntechOpen; p. 37–368.
  • Walters KA, Roberts MS. 2002. The structure and function of skin, dermatological and transdermal formulations. UK: CRC Press; p. 19–58.
  • Wang LS, Chen PJ, Cheng WC, Chang YC, El-Shazly M, Chen LY, Peng BR, Su CH, Yen PT, Hwang TL, et al. 2023. Chemometric-guided chemical marker selection: a case study of the heat-clearing herb Scrophularia ningpoensis. Front Plant Sci. 14:1153710. doi: 10.3389/fpls.2023.1153710.
  • Xiang T, Xiong QB, Ketut AI, Tezuka Y, Nagaoka T, Wu LJ, Kadota S. 2001. Studies on the hepatocyte protective activity and the structure–activity ­relationships of quinic acid and caffeic acid derivatives from the flower buds of Lonicera bournei. Planta Med. 67(4):322–325. doi: 10.1055/s-2001-14337.
  • Xiao R, Zou Y, Guo X, Li H, Lu H. 2022. Fatty acid desaturases (FADs) modulate multiple lipid metabolism pathways to improve plant resistance. Mol Biol Rep. 49(10):9997–10011. doi: 10.1007/s11033-022-07568-x.
  • Xu B, Chang SK. 2009. Phytochemical profiles and health-promoting effects of cool-season food legumes as influenced by thermal processing. J Agric Food Chem. 57(22):10718–10731. doi: 10.1021/jf902594m.
  • Yim S-H, Nam S-H. 2016. Physiochemical, nutritional and functional characterization of 10 different pear cultivars (Pyrus spp.). J Appl Bot Food Qual. 89:73–81.
  • Young A, McNaught CE. 2011. The physiology of wound healing. Surgery. 29(10):475–479. doi: 10.1016/j.mpsur.2011.06.011.
  • Zhao ZQ, Su YF, Yang F, Gao XM, Li TX. 2016. Two new lignan glycosides from the fruits of Pyrus ussuriensis. J Asian Nat Prod Res. 18(12):1151–1157. doi: 10.1080/10286020.2016.1210132.