98
Views
0
CrossRef citations to date
0
Altmetric
Review

Aerodynamic interference depends on stroke plane spacing and wing aspect ratio in damselfly model wings

ORCID Icon &

References

  • Alexander, D. E. (1986). Wind tunnel studies of turns by flying dragonflies. Journal of Experimental Biology, 122, 81–98.
  • Anwer, S. F., Ashraf, I., Mehdi, H., Ahmad, A., & Grafi, H. (2013). On the aerodynamic performance of dragonfly wing section in gliding mode. Advances in Aerospace Science and Applications, 3, 227–234.
  • Blanke, A. (2018). Analysis of modularity and integration suggests evolution of dragonfly wing venation mainly in response to functional demands. Journal of the Royal Society Interface, 15, 20180277. doi.org/10.1098/rsif.2018.0277
  • Bode-Oke, A. T., Zeyghami, S., & Dong, H. (2017). Aerodynamics and flow features of a damselfly in takeoff flight. Bioinspiration & Biomimetics, 12, 056006. doi.org/10.1088/1748-3190/aa7f52
  • Bode-Oke, A. T., Zeyghami, S., & Dong, H. (2018). Flying in reverse: kinematics and aerodynamics of a dragonfly in backward free flight. Journal of the Royal Society Interface, 15, 20180102. doi: 10.1098/rsif.2018.0102
  • Bomphrey, R. J., Nakata, T., Henningsson, P., & Lin, H.-T. (2016). Flight of the dragonflies and damselflies. Philosophical Transactions of the Royal Society London B, 371, 20150389. doi: 10.1098/rstb.2015.0389
  • Broering, T. M., & Lian, Y. (2015). Numerical study of tandem flapping wing aerodynamics in both two and three dimensions. Computers & Fluids, 115, 124–139. doi: 10.1016/j.compfluid.2015.04.003
  • Chen, Y., & Skote, M. (2016). Gliding performance of 3-D corrugated dragonfly wing with spanwise variation. Journal of Fluids and Structures, 62, 1–13. doi: 10.1016/j.jfluidstructs.2015.12.012
  • Davidovich, H., & Ribak, G. (2016). Flying with eight wings: inter-sex differences in wingbeat kinematics and aerodynamics during the copulatory flight of damselflies (Ischnura elegans). The Science of Nature, 103, 65. doi: 10.1007/s00114-016-1390-z
  • Dileo, C., & Deng, X. (2009). Design of and experiments on a dragonfly-inspired robot. Advanced Robotics, 23, 1003–1021. doi: 10.1163/156855309X443160
  • Ennos, A. R. (1989). Comparative functional morphology of the wings of Diptera. Zoological Journal of the Linnaean Society, 96, 27–47. doi: 10.1111/j.1096-3642.1989.tb01820.x
  • Fu, J.-J., Hefler, C., Qiu, H.-H., & Shyy, W. (2014). Effects of aspect ratio on flapping wing aerodynamics in animal flight. Acta Mechanica Sinica, 30, 776–786. doi: 10.1007/s10409-014-0120-z
  • Gorb, S. (2001). Attachment devices of insect cuticle. Dordrecht: Kluwer Academic Publishers.
  • Gravish, N., Peters, J. M., Combes, S. A., & Wood, R. J. (2015). Collective flow enhancement by tandem flapping wings. Physical Review Letters, 115, 188101. doi: 10.1103/PhysRevLett.115.188101
  • Hefler, C., Qiu, H., & Shyy, W. (2016). Dragonflies utilize flapping wings phasing and spanwise characteristics to achieve aerodynamic performance. arXiv preprint arXiv:1612.05353.
  • Hino, H., & Inamuro, T. (2018). Turning flight simulations of a dragonfly-like flapping wing-body model by the immersed boundary-lattice Boltzmann method. Fluid Dynamics Research, 50, 065501. doi: 10.1088/1873-7005/aad78c
  • Hou, D., Zhong, Z., Yin, Y., Pan, Y., & Zhao, H. (2017). The role of soft vein joints in dragonfly flight. Journal of Bionic Engineering, 14, 738–745. doi: 10.1016/S1672-6529(16)60439-0
  • Isogai, K., Fujishiro, S., Saitoh, T., Yamamoto, M., Yamasaki, M., & Matsubara, M. (2004). Unsteady three-dimensional viscous flow simulation of a dragonfly hovering. AIAA Journal, 42, 2053–2059. doi:10.1016/S1672-6529(16)60439-0 doi: 10.2514/1.6274
  • Jang, J., & Yang, G.-H. (2018). Design of wing root rotation mechanism for dragonfly-inspired micro air vehicle. Applied Sciences, 8, 1868. doi.org/10.3390/app8101868
  • Johansson, F., Söderquist, M., & Bokma, F. (2009). Insect wing shape evolution: independent effects of migratory and mate guarding flight on dragonfly wings. Biological Journal of the Linnean Society, 97, 362–372. doi.org/10.1111/j.1095-8312.2009.01211.x
  • Kok, J., Fatiaki, A., Rosser, K., Chahl, J., & Ogunwa, T. (2017). Dragonfly inspired MAVs-adaptive and evolutionary approaches. Paper presented at the 17th Australian International Aerospace Congress: AIAC 2017, Barton, Australian Capital Territory, Australia, pp. 129–138. ISBN: 9781922107855
  • Kuchta, S. R., & Svensson, E. I. (2014). Predator-mediated natural selection on the wings of the damselfly Calopteryx splendens: differences in selection among trait types. The American Naturalist, 184, 91–109. doi.org/10.1086/676043
  • Lai, W., Yan, J., Motamed, M., & Green, S. (2005). Force measurements on a scaled mechanical model of dragonfly in forward flight. Paper presented at the 12th International Conference on Advanced Robotics, IEEE, Seattle, Washington, pp. 595–600. 10.1109/ICAR.2005.1507469
  • Lehmann, F.-O. (2008). Wing–wake interaction reduces power consumption in insect tandem wings. Experiments in Fluids, 46, 765–775. doi.org/10.1007/978-3-642-11633-9_17 doi: 10.1007/s00348-008-0595-0
  • Li, C., & Dong, H. (2017). Wing kinematics measurement and aerodynamics of a dragonfly in turning flight. Bioinspiration & Biomimetics, 12, 026001. doi.org/10.1088/1748-3190/aa5761
  • Lu, Y., Shen, G. X., & Su, W. H. (2007). Flow visualization of dragonfly hovering via an electromechanical model. AIAA Journal, 45, 615–623. doi.org/10.2514/1.22088
  • Lua, K., Lu, H., Zhang, X., Lim, T., & Yeo, K. (2016). Aerodynamics of two-dimensional flapping wings in tandem configuration. Physics of Fluids, 28, 121901. doi.org/10.1063/1.4971859
  • Maybury, W. J., & Lehmann, F.-O. (2004). The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings. Journal of Experimental Biology, 207, 4707–4726. 10.1242/jeb.01319
  • Norberg, R. A. (1975). Hovering flight of the dragonfly Aeshna juncea L., kinematics and aerodynamics. In T. Y.-T. Wu, C. J. Brokaw & C. Brennen (Eds.), Swimming and Flying in Nature, vol. 2 (pp. 763–781). New York: Plenum Press. doi.org/10.1007/978-1-4757-1326-8_19
  • Outomuro, D., Adams, D. C., & Johansson, F. (2013). Wing shape allometry and aerodynamics in calopterygid damselflies: a comparative approach. BMC Evolutionary Biology, 13, 118. doi.org/10.1186/1471-2148-13-118
  • Outomuro, D., & Johansson, F. (2011). The effects of latitude, body size, and sexual selection on wing shape in a damselfly. Biological Journal of the Linnean Society, 102, 263–274. doi.org/10.1111/j.1095-8312.2010.01591.x
  • Rajabi, H., Rezasefat, M., Darvizeh, A., Dirks, J.-H., Eshghi, S., Shafiei, A., Mostofi, T. M., & Gorb, S. N. (2016). A comparative study of the effects of constructional elements on the mechanical behaviour of dragonfly wings. Applied Physics A, 122, 19. doi.org/10.1007/s00339-015-9557-6
  • Reavis, M. A., & Luttges, M. W. (1988). Aerodynamic forces produced by a dragonfly. AIAA Journal, 88–0330, 1–13. doi.org/10.2514/6.1988-330
  • Shi, X., Huang, X., Zheng, Y., & Zhao, S. (2016). Effects of cambers on gliding and hovering performance of corrugated dragonfly airfoils. International Journal of Numerical Methods for Heat & Fluid Flow, 26, 1092–1120. doi.org/10.1108/HFF-10-2015-0414
  • Shumway, N., Gabryszuk, M., & Laurence, S. J. (2018). Flapping tandem-wing aerodynamics: dragonflies in steady forward flight. In 2018 AIAA Aerospace Sciences Meeting, Kissimmee, FL, pp. 1290. doi.org/10.2514/6.2018-1290
  • Shumway, N., & Laurence, S. J. (2019). The impact of deformation on the aerodynamics of flapping dragonfly wings. In AIAA Scitech 2019 Forum, San Diego, CA, pp. 1378. doi.org/10.2514/6.2019-1378
  • Sivasankaran, P. N., Ward, T. A., Salami, E., Viyapuri, R., Fearday, C. J., & Johan, M. R. (2017). An experimental study of elastic properties of dragonfly-like flapping wings for use in biomimetic micro air vehicles (BMAVs). Chinese Journal of Aeronautics, 30, 726–737. doi.org/10.1016/j.cja.2017.02.011
  • Stocks, I. (2008). Wing coupling. In John L. Capinera (Ed.), Encyclopedia of entomology. (pp. 258–262). Dordrecht: Springer. doi.org/10.1007/978-1-4020-6359-6_2680
  • Somps, C., & Luttges, M. (1985). Dragonfly flight: novel uses of unsteady separated flows. Science, 228, 1326–1329. 10.1126/science.228.4705.1326
  • Sun, M., & Huang, H. (2007). Dragonfly forewing-hindwing interaction at various flight speeds and wing phasing. AIAA Journal, 45, 508–511. doi.org/10.2514/1.24666
  • Sun, M., & Lan, S. L. (2004). A computational study of the aerodynamic forces and power requirements of dragonfly (Aeschna juncea) hovering. Journal of Experimental Biology, 207, 1887–1901. 10.1242/jeb.00969
  • Sun, X., Gong, X., & Huang, D. (2017). A review on studies of the aerodynamics of different types of maneuvers in dragonflies. Archive of Applied Mechanics, 87, 521–554. doi.org/10.1007/s00419-016-1208-7
  • Takahashi, H., Concordel, A., Paik, J., & Shimoyama, I. (2016). The effect of the phase angle between the forewing and hindwing on the aerodynamic performance of a dragonfly-type ornithopter. Aerospace, 3, 4. doi.org/10.3390/aerospace3010004
  • Takizawa, K., Tezduyar, T. E., & Buscher, A. (2015). Space–time computational analysis of MAV flapping-wing aerodynamics with wing clapping. Computational Mechanics, 55, 1131–1141. doi.org/10.1007/s00466-014-1095-0
  • Thomas, A. L. R., Taylor, G. K., Srygley, R. B., Nudds, R. L., & Bomphrey, R. J. (2004). Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack. Journal of Experimental Biology, 207, 4299–4323. 10.1242/jeb.01262
  • Usherwood, J. R., & Lehmann, F.-O. (2008). Phasing of dragonfly wings can improve aerodynamic efficiency by removing swirl. Journal of the Royal Society Interface, 5(28), 1303–1307. doi:10.1098/rsif.2008.0124.
  • Vargas, A., Mittal, R., & Dong, H. (2008). A computational study of the aerodynamic performance of a dragonfly wing section in gliding flight. Bioinspiration & Biomimetics, 3, 026004. doi.org/10.1088/1748-3182/3/2/026004
  • Wakeling, J. M. (1993). Dragonfly aerodynamics and unsteady mechanisms: a review. Odonatologica, 22, 319–334.
  • Wakeling, J. M. (1997). Odonata wing and body morphologies. Odonatologica, 26, 35–52.
  • Wakeling, J. M., & Ellington, C. P. (1997). Dragonfly flight II. Velocities, accelerations, and kinematics of flapping flight. Journal of Experimental Biology, 200, 557–582.
  • Wang, H., Zeng, L., Liu, H., & Chunyong, Y. (2003). Measuring wing kinematics, flight trajectory and body attitude during forward flight and turning maneuvers in dragonflies. Journal of Experimental Biology, 206, 745–757. 10.1242/jeb.00183
  • Wang, J. K., & Sun, M. (2005). A computational study of the aerodynamics and forewing–hindwing interaction of a model dragonfly in forward flight. Journal of Experimental Biology, 208, 3785–3804. 10.1242/jeb.01852
  • Wang, X., Zhang, Z., Ren, H., Chen, Y., & Wu, B. (2017). Role of soft matter in the sandwich vein of dragonfly wing in its configuration and aero dynamic behaviors. Journal of Bionic Engineering, 14, 557–566. doi.org/10.1016/S1672-6529(16)60421-3
  • Wootton, R. J. (1991). The functional morphology of the wings of Odonata. Advances in Odonatology, 5, 153–169.
  • Wootton, R. J., & Newman, D. J. (2008). Evolution, diversification, and mechanics of dragonfly wings. In Alex Córdoba-Aguilar (Ed.), Dragonflies and damselflies: Model organisms for ecological and evolutionary research (Chap. 20, pp. 261–274). New York: Oxford University Press.
  • Wortmann, M., & Zarnack, W. (1993). Wing movements and lift regulation in the flight of desert locusts. Journal of Experimental Biology, 182, 57–69.
  • Xie, C.-M., & Huang, W.-X. (2015). Vortex interactions between forewing and hindwing of dragonfly in hovering flight. Theoretical and Applied Mechanics Letters, 5, 24–29. doi.org/10.1016/j.taml.2015.01.007
  • Young, J., S. Lai, J., & Germain, C. (2008). Simulation and parameter variation of flapping-wing motion based on dragonfly hovering. AIAA Journal, 46, 918–924. doi.org/10.2514/1.31610
  • Zheng, Y., Wu, Y., & Tang, H. (2016). An experimental study on the forewing–hindwing interactions in hovering and forward flights. International Journal of Heat and Fluid Flow, 59, 62–73. doi.org/10.1016/j.ijheatfluidflow.2015.12.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.