205
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Simple and collective twisted symmetries

Pages 593-627 | Received 08 May 2014, Accepted 23 Aug 2014, Published online: 14 Oct 2014

References

  • D.V. Alekseevsky, A.M. Vinogradov and V.V. Lychagin, Basic ideas and concepts of differential geometry, Springer 1991
  • A. Barco and G.E. Prince, “Solvable symmetry structures in differential form”, Acta Appl. Math. 66 (2001), 89–121.
  • P. Basarab-Horwath, “Integrability by quadratures for systems of involutive vector fields”, Ukr. Math. J. 43 (1992), 1236–1242.
  • A. Bhuvaneswari, R.A. Kraenkel and M. Senthilvelan, “Application of the λ -symmetries approach and time independent integral of the modified Emden equation”, Nonlin. Anal. RWA 13 (2012), 1102–1114.
  • A. Bhuvaneswari, R.A. Kraenkel and M. Senthilvelan, “Lie-point symmetries and the time-independent integral of the damped harmonic oscillator”, Physica Scripta 83 (2011), 055005.
  • J.F. Carinena, M. Del Olmo and P. Winternitz, “On the relation between weak and strong invariance of differential equations”, Lett. Math. Phys. 29 (1993), 151–163.
  • D. Catalano Ferraioli, “Nonlocal aspects of λ -symmetries and ODEs reduction”, J. Phys. A: Math. Theor. 40 (2007), 5479–5489.
  • D. Catalano Ferraioli and P. Morando, “Local and nonlocal solvable structures in the reduction of ODEs”, J. Phys. A: Math. Theor. 42 (2009), 035210 (15pp).
  • D. Catalano Ferraioli and P. Morando, “Exploiting solvable structures in the integration of variational ordinary differential equations”, preprint 2014
  • G. Cicogna, “Reduction of systems of first-order differential equations via Λ-symmetries”, Phys. Lett. A 372 (2008), 3672–3677.
  • G. Cicogna, “Symmetries of Hamiltonian equations and Λ-constants of motion”, J. Nonlin. Math. Phys. 16 (2009), 43–60.
  • G. Cicogna, “Generalized notions of symmetry of ODEs and reduction procedures”, Mathematical Methods in the Applied Sciences (2013), DOI:10.1002/mma.2937
  • G. Cicogna, “On the connections between symmetries and conservation rules of dynamical systems”, Math. Meth. Appl. Sci. 36 (2013), 208–215.
  • G. Cicogna and G. Gaeta, “Partial Lie-point symmetries of differential equations”, J. Phys. A 34 (2001), 491–512.
  • G. Cicogna and G. Gaeta, Symmetry and perturbation theory in nonlinear dynamics, Springer 1999
  • G. Cicogna, G. Gaeta and P. Morando, “On the relation between standard and µ-symmetries for PDEs”, J. Phys. A 37 (2004), 9467–9486.
  • G. Cicogna, G. Gaeta and S. Walcher, “A generalization of λ -symmetry reduction for systems of ODEs: σ -symmetries”, J. Phys. A: Math. Theor. 45 (2012), 355205 (29 pp).
  • G. Cicogna, G. Gaeta and S. Walcher, “Dynamical systems and σ -symmetries”, J. Phys. A 46 (2013), 235204 (23pp).
  • G. Cicogna, G. Gaeta and S. Walcher, “Orbital reducibility and a generalization of lambda symmetries”, J. Lie Theory 23 (2013), 357–381.
  • G. Cicogna, G. Gaeta and S. Walcher, “Side conditions for ordinary differential equations”, preprint 2014, to appear in J. Lie Theory
  • P.A. Clarkson and M.D. Kruskal, “New similarity solutions of teh Boussinesq equation”, J. Math. Phys. 30 (1989), 2201–2213.
  • G. Gaeta, Nonlinear symmetries and nonlinear equations, Kluwer, Dordrecht 1994
  • G. Gaeta, “Twisted symmetries of differential equations”, J. Nonlin. Math. Phys. 16-S (2009), 107–136.
  • G. Gaeta, “Gauge fixing and twisted prolongations”, J. Phys. A 44 (2011), 325203 (9pp).
  • G. Gaeta and P. Morando, “On the geometry of lambda-symmetries and PDE reduction”, J. Phys. A 37 (2004), 6955–6975.
  • C. Godbillon, Géométrie Différentielle et Mécanique Analitique, Hermann 1969
  • K.S. Govinder and P.G.L. Leach, “On the determination of non-local symmetries, J. Phys. A: Math. Gen. 28 (1995), 5349–5359.
  • G. Gun and T. Ozer, “First Integrals, integrating factors, and invariant solutions of the path equation based on Noether and λ -symmetries”, Abstr. Appl. Anal. 2013 (2013), 284653.
  • K.P. Hadeler and S. Walcher, “Reducible ordinary differential equations”, J. Nonlinear Sci. 16 (2006), 583–613.
  • T. Hartl and C. Athorne, “Solvable structures and hidden symmetries”, J. Phys. A: Math. Gen. 27 (1994), 3463–3471.
  • R. Hermann, Differential Geometry and the Calculus of Variations, Academic Press(New York) 1968
  • I.S. Krasil'schik and A.M. Vinogradov, Symmetries and conservation laws for differential equations of mathematical physics, A.M.S. 1999
  • D. Levi, M.C. Nucci and M.A. Rodriguez, “symmetries for the reduction of continuous and discrete equations”, Acta Appl. Math 122 (2012), 311–321.
  • D. Levi and M.A. Rodriguez, “λ -symmetries for discrete equations”, arXiv:1004.4808
  • D. Levi and P. Winternitz, “Non-classical symmetry reduction: example of the Boussinesq equation”, J. Phys. A 22 (1989), 2915–2924.
  • R. Mohanasubha et al., “Interplay of symmetries, null forms, Darboux polynomials, integrating factors and Jacobi multipliers in integrable second-order differential equations”, Proc. Royal Soc. A 470 (2014), 20130656.
  • P. Morando, “Deformation of Lie derivative and µ-symmetries”, J. Phys. A 40 (2007), 11547–11560.
  • P. Morando, “Reduction by λ -symmetries and σ -symmetries: a Frobenius approach”, preprint 2014
  • P. Morando and S. Sammarco, “Variational problems with symmetries: a Pfaffian system approach”, Acta Appl. Math. 120 (2012), 255–274.
  • C. Muriel and J.L. Romero, “New methods of reduction for ordinary differential equations”, IMA J. Appl. Math. 66 (2001), 111–125.
  • C. Muriel and J.L. Romero, “C∞ symmetries and nonsolvable symmetry algebras”, IMA J. Appl. Math. 66 (2001), 477–498.
  • C. Muriel and J.L. Romero, “Prolongations of vector fields and the invariants-by-derivation property”, Theor. Math. Phys. 113 (2002), 1565–1575.
  • C. Muriel and J.L. Romero, “C∞-symmetries and integrability of ordinary differential equations”; pp. 143–150 in Proceedings of the I Colloquium on Lie theory and applications (Vigo), 2002
  • C. Muriel and J.L. Romero, “C∞ symmetries and reduction of equations without Lie point symmetries”, J. Lie Theory 13 (2003), 167–188.
  • C. Muriel and J.L. Romero, “C∞-symmetries and nonlocal symmetries of exponential type, IMA J. Appl. Math. 72 (2007), 191–205.
  • C. Muriel and J.L. Romero, “Integrating factors and lambda-symmetries”, J. Nonlin. Math. Phys. 15-S3 (2008), 300–309.
  • C. Muriel and J.L. Romero, “First integrals, integrating factors and λ -symmetries of second-order differential equations”, J. Phys. A 42 (2009), 365207.
  • C. Muriel and J.L. Romero, “A λ -symmetry-based method for the linearization and determination of first integrals of a family of second-order ordinary differential equations”, J. Phys. A 44 (2011), 245201.
  • C. Muriel and J.L. Romero, “Second-order differential equations with first integrals of the form C(t) + 1/(A(t, x)x + B(t, x)), J. Nonlin. Math. Phys. 18-S1 (2011), 237–250.
  • C. Muriel and J.L. Romero, “Nonlocal symmetries, telescopic vector fields and λ -symmetries of ordinary differential equations”, Symmetry, Integrability and Geometry: Methods and Applications 8 (2012), 106.
  • C. Muriel and J.L. Romero, “The λ -symmetry reduction method and Jacobi last multipliers”, Comm. Nonlin. Science Num. Sim. 19 (2014), 807–820.
  • C. Muriel, J.L. Romero and P.J. Olver, “Variational C∞ symmetries and Euler-Lagrange equations”, J. Diff. Eqs. 222 (2006), 164–184.
  • M.C. Nucci and D. Levi, “symmetries and Jacobi last multiplier”, Nonlin. Anal. RWA 14 (2013), 1092–1101.
  • F. Oliveri, “Lie symmetries of differential equations: classical results and recent contributions”, Symmetry 2 (2010), 658–706.
  • P.J. Olver, Application of Lie groups to differential equations, Springer 1986
  • P.J. Olver, Equivalence, Invariants and Symmetry, Cambridge University Press 1995
  • P.J. Olver and Ph. Rosenau, “The construction of special solutions to partial differential equations”, Phys. Lett. A 114 (1986), 107–112.
  • P.J. Olver and Ph. Rosenau, “Group-invariant solutions of differential equations”, SIAM J. Appl. Math. 47 (1987), 263–278.
  • E. Pucci and G. Saccomandi, “On the weak symmetry groups of partial differential equations”, J. Math. Anal. Appl. 163 (1992), 588–598.
  • E. Pucci and G. Saccomandi, “On the reduction methods for ordinary differential equations”, J. Phys. A 35 (2002), 6145–6155.
  • R.W. Sharpe, Differential Geometry, Springer 1997
  • J. Sherring and G. Prince, “Geometric aspects of reduction of order”, Trans. Am. Math. Soc. 334 (1992), 433–453.
  • H. Stephani, Differential equations. Their solution using symmetries, Cambridge University Press 1989
  • S. Sternberg, Lectures on Differential Geometry, Chelsea 1983
  • S. Walcher, “Multi-parameter symmetries of first order ordinary differential equations”, J. Lie Theory 9 (1999), 249–269.
  • S. Walcher, “Orbital symmetries of first order ODEs”, in Symmetry and Perturbation Theory (SPT98), Editors: Degasperis A and Gaeta G World Scientific, Singapore (1999): 96–113

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.