188
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

On Modulated NLS-Ermakov Systems

&
Pages 61-74 | Received 07 Sep 2017, Accepted 06 Oct 2017, Published online: 28 Dec 2017

References

  • J. Abdullaev, A.S. Desyatnikov and E.A. Ostravoskaya, Suppression of collapse for matter waves with orbital angular momentum, J. Opt. 13 (2011) 064023. doi: 10.1088/2040-8978/13/6/064023
  • D.W. Barclay, T.B. Moodie and C. Rogers, Cylindrical impact waves in inhomogeneous Maxwellian visco-elastic media, Acta Mechanica 29 (1978) 93–117. doi: 10.1007/BF01176629
  • L.K. Bass, J.J.C. Nimmo, C. Rogers and W.K. Schief, Electrical structures of interfaces. A Painlevé II model, Proc. Roy. Soc. Lond. A466 (2010) 2117–2136. doi: 10.1098/rspa.2009.0620
  • A.P. Bassom, P.A. Clarkson and A. C. Hicks, Bäcklund transformations and solution hierarchies for the fourth Painlevé equation, Stud. Appl. Math. 95 (1995) 1–71. doi: 10.1002/sapm19959511
  • A.P. Bassom, P.A. Clarkson, A. C. Hicks and J.B. McLeod, Integral equations and exact solutions for the fourth Painlevé equation, Proc. Roy. Soc. Lond. A437 (1992) 1–24. doi: 10.1098/rspa.1992.0043
  • J. Belmonte-Beita, V.M. Pérez-Garcia and V. Vekslechik, Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities, Physical Review Letters 98 (2007) 064102. doi: 10.1103/PhysRevLett.98.064102
  • J. Belmonte-Beita, V.M. Pérez-Garcia, V. Vekslechik and V.V. Konotop, Localised nonlinear waves in systems with time and space-modulated nonlinearities, Physical Review Letters 100 (2008) 164102. doi: 10.1103/PhysRevLett.100.164102
  • H.H. Chen and C.S. Liu, Solitons in non-uniform media, Phys. Rev. Lett. 37 (1976) 693–697. doi: 10.1103/PhysRevLett.37.693
  • K.W. Chow and C. Rogers, Localized and periodic wave patterns for a nonic nonlinear Schrödinger equation, Phys. Lett. A 377 (2013) 2546–2550. doi: 10.1016/j.physleta.2013.07.041
  • P.L. Christiansen, J.C. Eilbeck, V.Z. Enolski and N.A. Kostov, Quasi-periodic solutions of the coupled nonlinear Schrödinger equations, Proc. Roy. Soc. London A 451 (1995) 685–700. doi: 10.1098/rspa.1995.0149
  • P.A. Clarkson, Remarks on the Yablonskii-Vorob’ev polynomials, Phys. Lett. A 319 (2003) 137–144. doi: 10.1016/j.physleta.2003.10.016
  • D.L. Clements, C. Atkinson and C. Rogers, Antiplane crack problems for an inhomogeneous elastic material, Acta Mechanica 29 (1978) 199–211. doi: 10.1007/BF01176637
  • D.L. Clements and C. Rogers, On the Bergman operator method and anti-plane contact problems involving an inhomogeneous half-space, SIAM J. Appl. Math. 34 (1978) 764–773. doi: 10.1137/0134065
  • F. Cornolti, M. Lucchesi and B. Zambon, Elliptic Gaussian beam self-focussing in nonlinear media, Opt. Commun. 75 (1990) 129–135. doi: 10.1016/0030-4018(90)90241-K
  • A.S. Desyatnikov, D. Buccoliero, M.R. Dennis and Y.S. Kivshar, Suppression of collapse for spiral elliptic solitons, Phys. Rev. Lett. 104 (2010) 053902-1–053902-4. doi: 10.1103/PhysRevLett.104.053902
  • V.P. Ermakov, Second-order differential equations: conditions of complete integrability, Univ. Izy. Kiev 20 (1880) 1–25.
  • A.M. Goncharenko, Y.A. Logvin, A.M. Samson, P.S. Shapovalev and S.I. Turovets, Ermakov Hamiltonian systems in nonlinear optics of elliptic Gaussian beams, Phys. Lett. A 160 (1991) 138–142. doi: 10.1016/0375-9601(91)90602-5
  • A.M. Goncharenko, Y.A. Logvin, A.M. Samson and P.S. Shapovalov, Rotating ellipsoidal gaussian beams in nonlinear media, Opt. Commun. 81 (1991) 225–230. doi: 10.1016/0030-4018(91)90643-R
  • C.R. Guiliano, J.H. Marburger and A. Yariv, Enhancement of self-focussing threshold in sapphire with elliptical beams, Appl. Phys. Lett. 21 (1972) 58–60. doi: 10.1063/1.1654278
  • F.C. Karal and J.B. Keller, Elastic wave propagation in homogeneous and inhomogeneous media, J. Acoust. Soc. America 31 (1959) 694–705. doi: 10.1121/1.1907775
  • N.A. Lukashevich, The second Painlevé equation, Diff. Equations 7 (1971) 853–854.
  • B.A. Malomed, Soliton Management in Periodic Systems (Springer, New York, 2006).
  • K. Okamato, The Hamiltonians associated to the Painlevé equations, in The Painlevé Property: One Century Later, R. Conte (Ed) , (Springer-Verlag, New York, 1999).
  • J.R. Ray, Nonlinear superposition law for generalised Ermakov systems, Phys. Lett. A 78 (1980) 4–6. doi: 10.1016/0375-9601(80)90789-6
  • J.L. Reid and J.R. Ray, Ermakov systems, nonlinear superposition and solution of nonlinear equations of motion, J. Math. Phys. 21 (1980) 1583–1587. doi: 10.1063/1.524625
  • C. Rogers, C. Hoenselaers and J.R. Ray, On 2+1-dimensional Ermakov systems, J. Phys. A: Mathematical & General 26 (1993) 2625–2633. doi: 10.1088/0305-4470/26/11/012
  • C. Rogers, B. Malomed, K. Chow and H. An, Ermakov-Ray-Reid systems in nonlinear optics, J. Phys. A: Math. Theor. 43 (2010) 455214. doi: 10.1088/1751-8113/43/45/455214
  • C. Rogers, B. Malomed and H. An, Ermakov-Ray-Reid reductions of variational approximations in nonlinear optics, Stud. Appl. Math. 129 (2012) 389–413. doi: 10.1111/j.1467-9590.2012.00557.x
  • C. Rogers and H. An, Ermakov-Ray-Reid systems in 2+1-dimensional rotating shallow water theory, Stud. Appl. Math. 125 (2010) 275–299.
  • C. Rogers and W.K. Schief, The pulsrodon in 2+1-dimensional magnetogasdynamics. Hamiltonian structure and integrability, J. Math. Phys. 52 (2011) 08371. doi: 10.1063/1.3622595
  • C. Rogers and W.K. Schief, On the integrability of a Hamiltonian reduction of a 2+1-dimensional nonisothermal rotating gas cloud system, Nonlinearity 24 (2011) 3165–3178. doi: 10.1088/0951-7715/24/11/009
  • C. Rogers, A novel Ermakov-Painlevé II system: n+1-dimensional coupled NLS and elastodynamic reductions, Stud. Appl. Math. 133 (2014) 214–231. doi: 10.1111/sapm.12039
  • C. Rogers, Hybrid Ermakov-Painlevé IV systems, J. Nonlinear Mathematical Physics 21 (2014) 628–642. doi: 10.1080/14029251.2014.975531
  • C. Rogers and W.K. Schief, Multi-component Ermakov systems: structure and linearization, J. Math. Anal. Appl. 198 (1996) 194–220. doi: 10.1006/jmaa.1996.0076
  • C. Rogers, Multi-component Ermakov and non-autonomous many-body systems connections, submitted (2017).
  • C. Rogers, G. Saccomandi and L. Vergori, Ermakov-modulated nonlinear Schrödinger models: integrable reduction, J. Nonlinear Mathematical Physics 23 (2016) 108–126. doi: 10.1080/14029251.2016.1135645
  • C. Rogers and U. Ramgulam, A nonlinear superposition principle and Lie group invariance: application in rotating shallow water theory, Int. J. Nonlinear Mech. 24 (1989) 229–236. doi: 10.1016/0020-7462(89)90042-5
  • C. Rogers, W.K. Schief and P. Winternitz, Lie-theoretical generalization and discretization of the Pinney equation, J. Math. Anal. Appl. 216 (1997) 246–264. doi: 10.1006/jmaa.1997.5674
  • C. Rogers, On hybrid Ermakov-Painlevé systems. Integrable reduction, J. Nonlinear Mathematical Physics 24 (2017) 239–249. doi: 10.1080/14029251.2017.1313477
  • C. Rogers and P.A. Clarkson, Ermakov-Painlevé II symmetry reduction of a Korteweg capillarity system, Symmetry, Integrability and Geometry: Methods and Applications 13 (2017) 018.
  • C. Rogers and W.K. Schief, On Ermakov-Painlevé II systems. Integrable reduction, Meccanica 51 (2016) 2967–2974. doi: 10.1007/s11012-016-0546-4
  • C. Rogers, A.P. Bassom and P.A. Clarkson, On integrable Ermakov-Painlevé IV systems, submitted (2017).
  • W.K. Schief, H. An and C. Rogers, Universal and integrable aspects of an elliptic vortex representation in 2+1-dimensional magnetogasdynamics, Stud. Appl. Math. 130 (2013) 49–79. doi: 10.1111/j.1467-9590.2012.00559.x
  • X.Y. Tang and P.K. Shukla, Solution of the one-dimensional spatially inhomogeneous cubic-quintic nonlinear Schrödinger equation with external potential, Phys. Rev. A 76 (2007) 013612. doi: 10.1103/PhysRevA.76.013612
  • A.P. Vorob’ev, On the rational solutions of the second Painlevé equation, Diff. Equations 1 (1965) 79–81.
  • W.G. Wagner, H.A. Haus and J.H. Marburger, Large-scale self-trapping of optical beams in the paraxial ray approximation, Phys. Rev. 175 (1968) 256–266. doi: 10.1103/PhysRev.175.256
  • A.I. Yablonskii, On rational solutions of the second Painlevé equation, Vesti AN BSSR, Ser. Fiz-Tech. Nauk 3 (1959) 30–35.
  • J.F. Zhang, Yi S. Li, J. Meng, L. Wo and B.A. Malomed, Matter-wave solitons and finite-amplitude Bloch waves in optical lattices with a spatially modulated nonlinearity, Phys. Rev. A 82 (2010) 033614. doi: 10.1103/PhysRevA.82.033614
  • W.P. Zhong, M.R. Belić, B.A. Malomed and T. Huang, Solitary waves in the nonlinear Schrödinger equation with Hermite-Gaussian modulation of the local nonlinearity, Phys. Rev. E 84 (2011) 046611. doi: 10.1103/PhysRevE.84.046611
  • W.P. Zhong, M.R. Belić and T. Huang, Solitary waves in the nonlinear Schrödinger equation with spatially modulated Bessel nonlinearity, J. Opt. Soc. Am. B30 (2013) 1276–1283. doi: 10.1364/JOSAB.30.001276

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.