52
Views
2
CrossRef citations to date
0
Altmetric
Articles

On a canonical nine-body problem. Integrable Ermakov decomposition via reciprocal transformations

Pages 98-106 | Received 16 Jul 2018, Accepted 12 Aug 2018, Published online: 03 Dec 2018

References

  • J. Abdullaev, A.S. Desyatnikov and E.A. Ostravoskaya, Suppression of collapse for matter waves with orbital angular momentum, J. Optics 13 (2011) 064023. doi: 10.1088/2040-8978/13/6/064023
  • A. Bachkhaznadji and M. Lassaut, Solvable few-body quantum problems, Few Body Systems 56 (2015) 1–17. doi: 10.1007/s00601-014-0924-1
  • A. Bachkhaznadji and M. Lassaut, Exactly solvable N-body quantum systems with N = 3k (k) 2) in the D = 1 dimensional space, Few-Body Systems 57 (2016) 773–791. doi: 10.1007/s00601-016-1107-z
  • F. Calogero, Solution of a three-body problem in one dimension, J. Math. Phys. 10 (1969) 2191–2196. doi: 10.1063/1.1664820
  • F. Calogero, Solution of the one-dimensional N-body problems with quadratic and/or inversely quadratic pair potentials, J. Math. Phys. 12 (1971) 419–436. doi: 10.1063/1.1665604
  • F. Calogero, Classical Many-Body Problems Amenable to Exact Treatments, Lecture Notes in Physics (Springer, Berlin, 2001).
  • F. Calogero and C. Marchioro, Exact solution of one-dimensional three-body scattering problem with two-body and/or three-body inverse-square potentials, J. Math. Phys. 15 (1974) 1425–1430. doi: 10.1063/1.1666827
  • F. Cornolti, M. Lucchesi and B. Zambon, Elliptic Gaussian beam self-focussing in nonlinear media, Opt. Commun. 75 (1990) 129–135. doi: 10.1016/0030-4018(90)90241-K
  • A.S. Desyatnikov, D. Buccoliero, M.R. Dennis and Y.S. Kivshar, Suppression of collapse for spiralling elliptic solitons, Phys. Rev. Lett. 104 (2010) 053902-1-053902-4. doi: 10.1103/PhysRevLett.104.053902
  • A. Donato, U. Ramgulam and C. Rogers, The 3+1-dimensional Monge-Ampère equation in discontinuity wave theory: application of a reciprocal transformation, Meccanica 27 (1992) 257–262. doi: 10.1007/BF00424364
  • F.J. Dyson, Dynamics of a spinning gas cloud, J. Math. Mech. 18 (1968) 91–101.
  • A.S. Fokas, C. Rogers and W.K. Schief, Evolution of methacrylate distribution during wood saturation. A nonlinear moving boundary problem, Appl. Math. Lett. 18 (2005) 321–328. doi: 10.1016/j.aml.2004.05.006
  • A.M. Goncharenko, Y.A. Logvin, A.M. Samson, P.S. Shapovalov and S.I. Turovets, Ermakov Hamiltonian systems in nonlinear optics of elliptic Gaussian beams, Phys. Lett. A 160 (1991) 138–142. doi: 10.1016/0375-9601(91)90602-5
  • A.M. Goncharenko, Y.A. Logvin, A.M. Samson and P.S. Shapovalov, Rotating elliptic Gaussian beams in nonlinear media, Opt. Commun. 81 (1991) 225–230. doi: 10.1016/0030-4018(91)90643-R
  • A.M. Goncharenko, V.G. Kukushkin, Y.A. Logvin and A.M. Samson, Self-focussing of two orthogonally polarized light beams in a nonlinear medium, Opt. Quantum Electron 25 (1991) 97–104. doi: 10.1007/BF00420405
  • C.R. Guiliano, J.H. Marburger and A. Yariv, Enhancement of self-focussing threshold in sapphire with elliptical beams, Appl. Phys. Lett. 21 (1972) 58–60. doi: 10.1063/1.1654278
  • A. Khare and R.K. Bhaduri, Some algebraically solvable three-body problems in one-dimension, J. Phys. A: Math. Gen. 27 (1994) 2213–2223. doi: 10.1088/0305-4470/27/6/041
  • B. Konopelchenko and C. Rogers, Bäcklund and reciprocal transformations: gauge connections, in Nonlinear Equations in Applied Science, Eds. W.F. Ames & C. Rogers (Academic Press, New York (1992) 317–362).
  • D.C. Mattis, The Many-Body Problem: 70 Years of Exactly Solved Quantum Many-Body Problems (World Scientific, Singapore 1993).
  • J. Moser, Three integrable Hamiltonian systems connected with isospectral deformations, Adv. Math. 16 (1975) 197–220. doi: 10.1016/0001-8708(75)90151-6
  • W. Oevel and C. Rogers, Gauge transformations and reciprocal links in 2+1-dimensions, Rev. Math. Phys. 5 (1993) 299–330. doi: 10.1142/S0129055X93000073
  • A.M. Perelomov, Integrable Systems of Classical Mechanics and Lie Algebras (Birkhausser, Basel 1990).
  • J.R. Ray, Nonlinear superposition law for generalised Ermakov systems, Phys. Lett. A 78 (1980) 4–6. doi: 10.1016/0375-9601(80)90789-6
  • J.L. Reid and J.R. Ray, Ermakov systems, nonlinear superposition and solution of nonlinear equations of motion, J. Math. Phys. 21 (1980) 1583–1587. doi: 10.1063/1.524625
  • C. Rogers, Multi-component Ermakov and non-autonomous many-body system connections, Ricerche di Matematica to be published (2018).
  • C. Rogers, C. Hoenselaers and J.R. Ray, On 2+1-dimensional Ermakov systems, J. Phys. A: Math. Gen. 26 (1993) 2625–2633. doi: 10.1088/0305-4470/26/11/012
  • C. Rogers, B. Malomed, K. Chow and H. An, Ermakov-Ray-Reid systems in nonlinear optics, J. Phys. A: Math. Theor. 43 (2010) 455214. doi: 10.1088/1751-8113/43/45/455214
  • C. Rogers, B. Malomed and H. An, Ermakov-Ray-Reid reductions of variational approximations in nonlinear optics, Stud. Appl. Math. 129 (2012) 389–413. doi: 10.1111/j.1467-9590.2012.00557.x
  • C. Rogers and H. An, Ermakov-Ray-Reid systems in 2+1-dimensional rotating shallow water theory, Stud. Appl. Math. 125 (2010) 275–299.
  • C. Rogers and W.K. Schief, The pulsrodon in 2+1-dimensional magneto-gasdynamics. Hamiltonian structure and integrability, J. Math. Phys. 52 (2011) 083701. doi: 10.1063/1.3622595
  • C. Rogers, Elliptic warm-core theory: the pulsrodon, Phys. Lett. A 138 (1989) 267–273. doi: 10.1016/0375-9601(89)90275-2
  • C. Rogers and W.K. Schief, On the integrability of a Hamiltonian reduction of a 2+1-dimensional non-isothermal rotating gas cloud system, Nonlinearity 24 (2011) 3165–3178. doi: 10.1088/0951-7715/24/11/009
  • C. Rogers, Reciprocal relations in non-steady one-dimensional gasdynamics, Zeit. Angew. Math. Phys. 19 (1968) 58–63. doi: 10.1007/BF01603278
  • C. Rogers, Invariant transformations in non-steady gasdynamics and magneto-gasdynamics, Zeit. Angew. Math. Phys. 20 (1969) 370–382. doi: 10.1007/BF01590430
  • C. Rogers, Application of a reciprocal transformation to a two-phase Stefan problem, J. Phys. A: Math. Gen. 18 (1985) L105–L109. doi: 10.1088/0305-4470/18/3/002
  • C. Rogers, On a class of moving boundary problems in nonlinear heat conduction. Application of a Bäcklund transformation, Int. J. Nonlinear Mechanics 21 (1986) 249–256. doi: 10.1016/0020-7462(86)90032-6
  • C. Rogers, On a class of reciprocal Stefan moving boundary problems, Zeit. Ang. Math. Phys. 66 (2015) 2069–2079. doi: 10.1007/s00033-015-0506-1
  • C. Rogers, Moving boundary problems for an extended Dym equation. Reciprocal connections, Meccanica 52 (2017) 3531–3540. doi: 10.1007/s11012-017-0662-9
  • C. Rogers, M.P. Stallybrass and D.L. Clements, On two phase filtration under gravity and with boundary infiltration. Application of a Bäcklund transformation, J. Nonlinear Analysis, Theory, Methods and Applications 7 (1983) 785–799. doi: 10.1016/0362-546X(83)90034-2
  • C. Rogers and T. Ruggeri, A reciprocal Bäcklund transformation: application to a nonlinear hyperbolic model in heat conduction, Lett. Il Nuovo Cimento 44 (1985) 289–296. doi: 10.1007/BF02746683
  • C. Rogers and M.C. Nucci, On reciprocal Bäcklund transformations and the Korteweg-de Vries hierarchy, Physica Scripta 33 (1986) 289–292. doi: 10.1088/0031-8949/33/4/001
  • C. Rogers and S. Carillo, On reciprocal properties of the Caudrey-Dodd-Gibbon and KaupKuperschmidt hierarchies, Physica Scripta 36 (1987) 865–869. doi: 10.1088/0031-8949/36/6/001
  • C. Rogers, The Harry Dym equation in 2+1-dimensions: a reciprocal link with the Kadomtsev-Petviashvili equation, Phys. Lett. 120A (1987) 15–18. doi: 10.1016/0375-9601(87)90256-8
  • C. Rogers and P. Wong, On reciprocal Bäcklund transformations of inverse scattering schemes, Physica Scripta 30 (1984) 10–14. doi: 10.1088/0031-8949/30/1/003
  • C. Rogers and W.K. Schief, Bäcklund and Darboux Transformations. Geometry and Modern Applications in Soliton Theory (Cambridge Texts in Applied Mathematics, Cambridge University Press 2002).
  • C. Rogers and W.K. Schief, Ermakov-type systems in nonlinear physics and continuum mechanics, in Nonlinear Systems and Their Remarkable Mathematical Structures N. Euler (ed) (CRC Press, Boca Raton Fl 2018).
  • A. Rubino and P. Brandt, Warm-core eddies studied by laboratory experiments and numerical modelling, J. Phys. Oceanography 33 (2003) 431–435. doi: 10.1175/1520-0485(2003)033<0431:WCESBL>2.0.CO;2
  • B. Sutherland, Quantum many-body problems in one-dimension: ground state, J. Math. Phys. 12 (1971) 246–250. doi: 10.1063/1.1665584
  • B. Sutherland, Exact results for a quantum many-body problem in one-dimension, Phys. Rev. A 4 (1971) 2019–2021. doi: 10.1103/PhysRevA.4.2019
  • W.K. Schief, H. An and C. Rogers, Universal and integrable aspects of an elliptic vortex representation in 2+1-dimensional magnetogasdynamics, Stud. Appl. Math. 130 (2013) 49–79. doi: 10.1111/j.1467-9590.2012.00559.x
  • W.G. Wagner, H.A. Haus and J.H. Marburger, Large scale self-trapping of optical beams in the paraxial ray approximation, Phys. Rev. 175 (1968) 256–266. doi: 10.1103/PhysRev.175.256

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.