207
Views
4
CrossRef citations to date
0
Altmetric
Articles

Preparation of BiOBr/BiVO4 composite and its application for photocatalytic degradation under visible light

, , , , , & show all
Pages 230-234 | Received 05 May 2015, Accepted 09 Aug 2015, Published online: 22 Apr 2016

References

  • S. X. Luo and F. M. Wang: ‘Preparation and photocatalytic activity of Zr doped TiO2’, Mater. Res. Innov., 2009, 13, 54–63.
  • M. P. Bello Lamo and D. Bahneman: ‘Photocatalytic performance of S doped TiO2 in relation to processing conditions: calcination temperature and heating rate’, Mater. Res. Innov., 2011, 15, 415–421.
  • Yu X. and L. Huang: ‘Preparation and performance of Cu2O/TiO2 nano-thin film for photocatalytic degradation of methylene blue’, Mater. Res. Innov., 2015, 19, 441–448.
  • K. Shen and H. Ding: ‘Design and regulation about composition of minerals and TiO2 particles’, Mater. Res. Innov., 2015, 19, 246–251.10.1179/1432891715Z.0000000001479
  • S. Thangavel, G. Venugopal and S. J. Kim: ‘Enhanced photocatalytic efficacy of organic dyes using β-tin tungstate–reduced graphene oxide nanocomposites’, Mater. Chem. Phys., 2014, 145, 108–115.10.1016/j.matchemphys.2014.01.046
  • S. Thangavel and G. Venugopal: ‘Understanding the adsorption property of graphene-oxide with different degrees of oxidation levels’, Powder Technol., 2014, 257, 141–148.10.1016/j.powtec.2014.02.046
  • M. L. Zhong, G. Q. Zhang and X. Q. Yang: ‘Preparation of Ti mesh supported WO3/TiO2 nanotubes composite and its application for photocatalytic degradation under visible light’, Mater. Lett., 2015, 145, 216–218.10.1016/j.matlet.2015.01.091
  • W. Q. Cui and W. J. An: ‘Novel Cu2O quantum dots coupled flower-like BiOBr for enhanced photocatalytic degradation of organic contaminant’, J. Hazard. Mater., 2014, 280, 417–427.10.1016/j.jhazmat.2014.08.032
  • C. Q. Xu and H. H. Wu: ‘Efficient adsorption and photocatalytic degradation of Rhodamine B under visible light irradiation over BiOBr/montmorillonite composites’, J. Hazard. Mater., 2014, 275, 185–192.10.1016/j.jhazmat.2014.04.064
  • Y. Na and Y. Kim: ‘Adsorption/photocatalytic performances of hierarchical flowerlike BiOBrxCl1−x nanostructures for methyl orange, Rhodamine B and methylene blue’, Mater. Sci. Semicond. Process., 2014, 27, 181–190.10.1016/j.mssp.2014.06.043
  • Z. S. Liu and B. T. Wu: ‘BiPO4/BiOBr p–n junction photocatalysts: one-pot synthesis and dramatic visible light photocatalytic activity’, Mater. Res. Bull., 2015, 63, 187–193.10.1016/j.materresbull.2014.12.020
  • W. Q. Cui and W. J. An: ‘Synthesis of CdS/BiOBr composite and its enhanced photocatalytic degradation for Rhodamine B’, Appl. Surf. Sci., 2014, 319, 298–305.10.1016/j.apsusc.2014.05.179
  • L. Lin and M. H. Huang: ‘Fabrication of a three-dimensional BiOBr/BiOI photocatalyst with enhanced visible light photocatalytic performance’, Ceram. Int. 2014, 40, 11493–11501.10.1016/j.ceramint.2014.03.039
  • Y. L. Li and Y. M. Liu: ‘Titanium alkoxide induced BiOBr–Bi2WO6 mesoporous nanosheet composites with much enhanced photocatalytic activity’, J. Mater. Chem. A, 2013, 1, 1949–7956.
  • X. X. Wei and H. T. Cui: ‘Hybrid BiOBr–TiO2 nanocomposites with high visible light photocatalytic activity for water treatment’, J. Hazard. Mater., 2013, 263, 650–658.10.1016/j.jhazmat.2013.10.027
  • Z. K. Cui and F. L. Zhang: ‘Preparation and characterisation of Ag3PO4/BiOBr composites with enhanced visible light driven photocatalytic performance’, Mater. Technol., 2014, 29, 214–219.10.1179/1753555714Y.0000000131
  • G. Longo and F. Fresno: ‘Synthesis of BiVO4/TiO2 composites and evaluation of their photocatalytic activity under indoor illumination’, Environ. Sci. Pollut. Res., 2014, 21, 11189–11197.10.1007/s11356-014-2624-2
  • R. G. Li and F. X. Zhang: ‘Spatial separation of photogenerated electrons and holes among 010 and 110 crystal facets of BiVO4’, Nat. Commun., 2012, 4, 1432–1438.
  • K. Soma and A. Iwase: ‘Enhanced activity of BiVO4 powdered photocatalyst under visible light irradiation by preparing microwave-assisted aqueous solution methods’, Catal. Lett., 2014, 144, 1962–1967.10.1007/s10562-014-1361-y
  • D. Wang and R. G. Li: ‘Photocatalytic water oxidation on BiVO4 with the electrocatalyst as an oxidation cocatalyst: essential relations between electrocatalyst and photocatalyst’, J. Phys. Chem. C, 2012, 116, 5082–5089.10.1021/jp210584b
  • W. R. Zhao and Y. Wang: ‘Carbon spheres supported visible-light-driven CuO-BiVO4 heterojunction: preparation, characterization, and photocatalytic properties’, Appl. Catal., B: Environ., 2012, 115, 90–99.10.1016/j.apcatb.2011.12.018
  • R. J. Wang and G. H. Jiang: ‘Efficient visible-light-induced photocatalytic activity over the novel Ti-doped BiOBr microspheres’, Powder Technol., 2012, 228, 258–263.10.1016/j.powtec.2012.05.028
  • Y. C. Feng and L. Li: ‘Synthesis of mesoporous BiOBr 3D microspheres and their photodecomposition for toluene’, J. Hazard. Mater., 2011, 192, 538–544.10.1016/j.jhazmat.2011.05.048
  • W. Z. Yin and W. Z. Wang: ‘CTAB-assisted synthesis of monoclinic BiVO4 photocatalyst and its highly efficient degradation of organic dye under visible-light irradiation’, J. Hazard. Mater., 2010, 173, 194–199.10.1016/j.jhazmat.2009.08.068
  • J. Fu and Y. L. Tian: ‘BiOBr–carbon nitride heterojunctions: synthesis, enhanced activity and photocatalytic mechanism’, J. Mater. Chem., 2012, 22, 21159–21166.10.1039/c2jm34778d
  • J. Z. Su and L. J. Guo: ‘Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting’, Nano Lett., 2011, 11, 1928–1933.10.1021/nl2000743
  • Z. T. Deng, D. Chen: ‘From bulk metal Bi to two-dimensional well-crystallized BiOX (X = Cl, Br) micro- and nanostructures: synthesis and characterization’, Cryst. Growth Des., 2008, 8, 2995–3003.10.1021/cg800116m
  • S. Wang and B. Huang: ‘A new photocatalyst: Bi2TiO4F2 nanoflakes synthesized by a hydrothermal method’, Dalton Trans., 2011, 40, 12670–12675.10.1039/c1dt10889a
  • J. H. Bi and J. Li: ‘Effects of aluminum substitution on photocatalytic property of BiVO4 under visible light irradiation’, Mater. Res. Bull., 2012, 47, 850–855.10.1016/j.materresbull.2011.11.041
  • M. C. Long and W. M. Cai: ‘Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation’, J. Phys. Chem. B, 2006, 110, 20211–20216.10.1021/jp063441z
  • Y. Y. Luo and G. Q. Tan: ‘Structural transformation of Sm3+ doped BiVO4 with high photocatalytic activity under simulated sun-light’, Appl. Surf. Sci., 2015, 324, 505–511.10.1016/j.apsusc.2014.10.168
  • C. L. Yu and K. Yang: ‘Fast fabrication of Co3O4 and CuO/BiVO4 composite photocatalysts with high crystallinity and enhanced photocatalytic activity via ultrasound irradiation’, J. Alloys Compd., 2011, 509, 4547–4552.10.1016/j.jallcom.2011.01.100
  • S. Chala and K. Wetchakun: ‘Enhanced visible-light-response photocatalytic degradation of methylene blue on Fe-loaded BiVO4 photocatalyst’, J. Alloys Compd., 2014, 597, 129–135.10.1016/j.jallcom.2014.01.130
  • M. Ou and Q. Zhong: ‘Ultrasound assisted synthesis of heterogeneous g-C3N4/BiVO4 composites and their visible-light-induced photocatalytic oxidation of NO in gas phase’, J. Alloys Compd., 2015, 626, 401–409.10.1016/j.jallcom.2014.11.148
  • M. A. Butler: ‘Photoelectrolysis and physical properties of the semiconducting electrode WO2’, J. Appl. Phys., 1977, 48, 1914–1920.10.1063/1.323948
  • X. M. Tu and S. L. Luo: ‘One-pot synthesis, characterization, and enhanced photocatalytic activity of a BiOBr-graphene composite’, Chem. Eur. J., 2012, 18, 14359–14366.10.1002/chem.201200892
  • J. X. Xia and J. Di: ‘Facile fabrication of the visible-light-driven Bi2WO6/BiOBr composite with enhanced photocatalytic activity’, RSC Adv., 2014, 4, 82–90.10.1039/C3RA44191A
  • X. Xu and Q. Zou: ‘Preparation of BiVO4-graphene nanocomposites and their photocatalytic activity’, J. Nanomater., 2014, 2014, 1–6.
  • Y. Y. Liu and Z. Y. Wang: ‘Enhanced photocatalytic degradation of organic pollutants over basic bismuth (III) nitrate/BiVO4 composite’, J. Colloid Interface Sci., 2010, 348, 211–215.10.1016/j.jcis.2010.04.019
  • S. X. Wu and J. Z. Fang: ‘Bismuth-modified rectorite with high visible light photocatalytic activity’, Catal. A: Chem., 2013, 373, 114–120.10.1016/j.molcata.2013.03.012
  • F. Guo and W. L. Shi: ‘Hydrothermal synthesis of graphitic carbon nitride–BiVO4 composites with enhanced visible light photocatalytic activities and the mechanism study’, J. Phys. Chem. Solids, 2014, 75, 1217–1222.10.1016/j.jpcs.2014.05.011
  • H. M. Yuan and J. L. Liu: ‘Designed synthesis of a novel BiVO4–Cu2O–TiO2 as an efficient visible-light-responding photocatalyst’, J. Colloid Interface Sci., 2015, 444, 58–66.
  • Q. Wu and P. F. Chen: ‘Photocatalytic behavior of BiVO4 immobilized on silica fiber via a combined alcohol-thermal and carbon nanofibers template route’, Catal. Commun., 2014, 49, 29–33.
  • J. Zhang and F. J. Shi: ‘Self-assembled 3-d architectures of BiOBr as a visible light-driven photocatalyst’, Chem. Mater., 2008, 20, 2937–2941.10.1021/cm7031898
  • Y. X. Ji and J. F. Cao: ‘G–C3N4/BiVO4 composites with enhanced and stable visible light photocatalytic activity’, J. Alloys Compd., 2014, 590, 9–14.10.1016/j.jallcom.2013.12.050
  • G. Q. Zhu and M. Hojamberdiev: ‘Hydrothermal synthesis and visible-light photocatalytic activity of porous peanut-like BiVO4 and BiVO4/Fe3O4 submicron structures’, Ceram. Int., 2013, 39, 9163–9172.10.1016/j.ceramint.2013.05.017
  • P. Madhusudan and J. R. Ran: ‘Novel urea assisted hydrothermal synthesis of hierarchical BiVO4/Bi2O2CO3 nanocomposites with enhanced visible-light photocatalytic activity’, Appl. Catal., B: Environ., 2011, 110, 286–295.10.1016/j.apcatb.2011.09.014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.