329
Views
3
CrossRef citations to date
0
Altmetric
Research Paper

Effective electrosynthesis and in situ surface coating of Fe3O4 nanoparticles with polyvinyl alcohol for biomedical applications

, , , , , & show all
Pages 1-8 | Received 23 Jul 2016, Accepted 19 Nov 2016, Published online: 10 Jul 2017

References

  • Kandasamy G, Maity D. Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int J Pharmaceut. 2015;496:191–218.10.1016/j.ijpharm.2015.10.058
  • Lee N, Yoo D, Ling D, et al. Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem Rev. 2015;115:10637–10689.10.1021/acs.chemrev.5b00112
  • Wu W, Wu Z, Yu T, et al. Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater. 2015;16:023501–0235014.10.1088/1468-6996/16/2/023501
  • Yoffe S, Leshuk T, Everett P, et al. Superparamagnetic iron oxide nanoparticles (SPIONs): synthesis and surface modification techniques for use with mri and other biomedical applications. Curr Pharmaceut Des. 2013;19:493–509.10.2174/138161213804143707
  • Sharma R, Haik Y, Chen CJ. Superparamagnetic iron oxide myoglobin as potential nanoparticle: iron oxide myoglobin binding properties and magnetic resonance imaging marker in mouse imaging. J Exp Nanosci. 2007;2:127–138.10.1080/17458080601129045
  • Arami H, Khandhar A, Liggitt D, et al. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem Soc Rev. 2015;44:8576–8607.10.1039/C5CS00541H
  • Bohara RA, Thorat ND, Pawar SH. Role of functionalization: strategies to explore potential nano-bio applications of magnetic nanoparticles. RSC Adv. 2016;6:43989–44012.10.1039/C6RA02129H
  • Roohi F, Lohrke J, Ide A, et al. Studying the effect of particle size andcoating type on the blood kinetics of superparamagnetic iron oxide nanoparticles. J Nanomed. 2012;7:4447–4458.
  • Sabareeswaran A, Ansar EB, Harikrishna Varma PRV, et al. Effect of surface-modified superparamagnetic iron oxide nanoparticles (SPIONS) on mast cell infiltration: an acute in vivo study. Nanomed Nanotechnol Biol Med. 2016;12:1523–1533.
  • Demirer GS, Okur AC, Kizilel S. Synthesis and design of biologically inspired biocompatible iron oxide nanoparticles for biomedical applications. J Mater Chem B. 2015;3:7831–7849.10.1039/C5TB00931F
  • Francis R, Joy N, Aparna EP, et al. Polymer grafted inorganic nanoparticles, preparation, properties, and applications: a review. Polym Rev. 2014;54:268–347.10.1080/15583724.2013.870573
  • Prabha G, Raj V. Preparation and characterization of polymer nanocomposites coated magnetic nanoparticles for drug delivery applications. J Magn Magn Mater. 2016;408:26–34.10.1016/j.jmmm.2016.01.070
  • Oh JK, Park JM. Iron oxide-based superparamagnetic polymeric nanomaterials: design, preparation, and biomedical application. Prog Polym Sci. 2011;36:168–189.10.1016/j.progpolymsci.2010.08.005
  • Silva SM, Tavallaie R, Sandiford L, et al. Gold coated magnetic nanoparticles: from preparation to surface modification for analytical and biomedical applications. Chem Commun. 2016;52:7528–7540.10.1039/C6CC03225G
  • Majouga A, Sokolsky-Papkov M, Kuznetsov A. Enzyme-functionalized gold-coated magnetite nanoparticles as novel hybrid nanomaterials: synthesis, purification and control of enzyme function by low-frequency magnetic field. Colloids Surf B: Biointerfaces. 2015;125:104–109.10.1016/j.colsurfb.2014.11.012
  • Han Y, Lei S, Lu J, et al. Potential use of SERS-assisted theranostic strategy based on Fe3O4/Au cluster/shell nanocomposites for bio-detection, MRI, and magnetic hyperthermia. Mater Sci Eng C. 2016;64:199–207.10.1016/j.msec.2016.03.090
  • Khosroshahi ME, Ghazanfari L, Tahriri M. Characterisation of binary (Fe3O4/SiO2) biocompatible nanocomposites as magnetic fluid. J Exper Nanosci. 2011;6:580–595.10.1080/17458080.2010.489582
  • Guo X, Mao F, Wang W. Sulfhydryl-modified Fe3O4@SiO2 core/shell nanocomposite: synthesis and toxicity assessment in vitro. ACS Appl Mater Interfaces. 2015;7:14983–14991.10.1021/acsami.5b03873
  • Qu H, Tong S, Song K. Controllable in Situ synthesis of magnetite coated silica-core water-dispersible hybrid nanomaterials. Langmuir. 2013;29:10573–10578.10.1021/la4022867
  • Slováková M, Sedlák M, Křížková B. Application of trypsin Fe3O4@SiO2 core/shell nanoparticles for protein digestion. Proc Biochem. 2015;50:2088–2098.10.1016/j.procbio.2015.09.002
  • Pardoe H, Chua-anusorn W, Pierre TGS, et al. Structural and magnetic properties of nanoscale iron oxide particles synthesized in the presence of dextran or polyvinyl alcohol. J Magn Magn Mater. 2001;225:41–46.10.1016/S0304-8853(00)01226-9
  • Chastellain M, Petri A, Hofmann H. Particle size investigations of a multistep synthesis of PVA coated superparamagnetic nanoparticles. J Colloid Interface Sci. 2004;278:353–360.10.1016/j.jcis.2004.06.025
  • Mahmoudi M, Simchi A, Imani M, et al. Optimal design and characterization of superparamagnetic iron oxide nanoparticles coated with polyvinyl alcohol for targeted delivery and imaging. J Phys Chem B. 2008;112:14470–14481.10.1021/jp803016n
  • Mahmoudi M, Simchi A, Imani M, et al. A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles. Colloids Surf B Biointer. 2010;75:300–309.10.1016/j.colsurfb.2009.08.044
  • Kayal S, Ramanujan RV. Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery. Mater Sci Eng C. 2010;30:484–490.10.1016/j.msec.2010.01.006
  • Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26:3995–4021.10.1016/j.biomaterials.2004.10.012
  • Mohapatra S, Pramanik N, Ghosh SK, et al. Synthesis and characterization of ultrafine poly(vinylalcohol phosphate) coated magnetite nanoparticles. J Nanosci Nanotechnol. 2006;6:823–829.10.1166/jnn.2006.117
  • Petri-Fink A, Chastellain M, Juillerat-Jeanneret L, et al. Development of functionalized superparamagnetic iron oxide nanoparticles for interaction with human cancer cells. Biomaterials. 2005;26:2685–2694.10.1016/j.biomaterials.2004.07.023
  • Cavalieri F, Chiessi E, Villa R, et al. Novel PVA-based hydrogel microparticles for doxorubicin delivery biomacromolecules. Biomacromolecules. 2008;9:1967–1973.10.1021/bm800225v
  • Khosroshahi ME, Ghazanfari L. Preparation and rheological studies of uncoated and PVA-coated magnetite nanofluid. J Magn Magn Mater. 2012;324:4143–4146.10.1016/j.jmmm.2012.07.025
  • Kurchania R, Sawant SS, Richard JB. Synthesis and characterization of magnetite/polyvinyl alcohol core–shell composite nanoparticles. J Am Ceram Soc. 2014;97:3208–3215.10.1111/jace.13108
  • Mallakpour S, Dinari M, Hatami M. Dispersion of surface-modified nano-Fe3O4 with poly(vinylalcohol) in chiral poly(amide-imide)bearing pyromellitoyl-bis-lphenylalanine segments. J Mater Sci. 2015;50:2759–2767.10.1007/s10853-015-8831-5
  • Aghazadeh M, Yousefi T, Ghaemi M. Low-temperature electrochemical synthesis and characterization of ultrafine Y(OH)3 and Y2O3 nanoparticles. J Rare Earths. 2012;30:236–240.10.1016/S1002-0721(12)60030-1
  • Cheraghali R, Aghazadeh M. A simple and facile electrochemical route to synthesis of metal hydroxides and oxides ultrafine nanoparticles (M=La, Gd, Ni and Co). Anal Bioanal Electrochem. 2012;8, 64–77.
  • Kim S, Lee H, Park CM, et al. Synthesis of tin oxide nanoparticle film by cathodic electrodeposition. J Nanosci Nanotechnol. 2012;12:1616–1619.10.1166/jnn.2012.4646
  • Aghazadeh M, Barmi AAM, Hosseinifard M. Nanoparticulate Zr(OH)4 and ZrO2 prepared by low-temperature cathodic electrodeposition’. Mater Lett. 2012;73:28–31.10.1016/j.matlet.2011.12.118
  • Aghazadeh M, Barmi AAM, Gharailou D. Cobalt hydroxide ultra-fine nanoparticles with excellent energy storage ability. Appl Surf Sci. 2013;283:871–875.10.1016/j.apsusc.2013.07.035
  • Kothari HM, Kulp EA, Limmer SJ, et al. Electrochemical deposition and characterization of magnetite films produced by the reduction of Fe(III)-triethanolamine. J Mater Res. 2006;21:293–301.10.1557/jmr.2006.0030
  • Salamun N, Ni HX, Triwahyono S. Synthesis and characterization of Fe3O4 nanoparticles by electrodeposition and reduction methods. J Fundamental Sci. 2011;7:89–92.
  • Ying TY, Yiacoumi S, Tsouris C. An electrochemical method for the formation of magnetite particles*. J Dispersion Sci Technol. 2002;23:569–576.10.1081/DIS-120014025
  • Marques RFC, Garcia C, Lecante P. Electro-precipitation of Fe3O4 nanoparticles in ethanol. J Magn Magn Mater. 2008;320:2311–2315.10.1016/j.jmmm.2008.04.165
  • Ibrahim M, Serrano KG, Noe L. Electro-precipitation of magnetite nanoparticles: An electrochemical study. Electrochim Acta. 2009;55:155–158.10.1016/j.electacta.2009.08.026
  • Karimzadeh I, Dizaji HR, Aghazadeh M. Development of a facile and effective electrochemical strategy for preparation of iron oxides (Fe3O4 and γ-Fe2O3) nanoparticles from aqueous and ethanol mediums and in situ PVC coating of Fe3O4 superparamagnetic nanoparticles for biomedical applications. J Magn Magn Mater. 2016;416:81–88.10.1016/j.jmmm.2016.05.015
  • Karimzadeh I, Aghazadeh M, Ganjali MR. A novel method for preparation of bare and poly(vinylpyrrolidone) coated superparamagnetic iron oxide nanoparticles for biomedical applications. Mater Lett. 2016;179:5–8.10.1016/j.matlet.2016.05.048
  • Karimzadeh I, Aghazadeh M, Shirvani-Arani S. Preparation of polymer coated superparamagnetic iron oxide (Fe3O4) nanoparticles for biomedical application. Int J Bio-Inorg Hybr Nanomater. 2016;5:33–41.
  • Karimzadeh I, Dizaji HR, Aghazadeh M. Preparation, characterization and PEGylation of superparamagnetic Fe3O4 nanoparticles from ethanol medium via cathodic electrochemical deposition (CED) method. Mater Res Express. 2016;3:095022–095028.10.1088/2053-1591/3/9/095022
  • Bajpai AK, Gupta R. Synthesis and characterization of magnetite (Fe3O4)—polyvinyl alcohol-based nanocomposites and study of superparamagnetism. Polym Compos. 2010;31:245–255.
  • Abu-Much R, Meridor U, Frydman A, et al. Formation of a three-dimensional microstructure of Fe3O4−poly(vinyl alcohol) composite by evaporating the hydrosol under a magnetic field. J Phys Chem B. 2006;110:8194–8203.10.1021/jp057123w
  • Lee LT, Somasundaran P. Adsorption of polyacrylamide on oxide minerals. Langmuir. 1989;5:854–860.10.1021/la00087a047

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.