321
Views
54
CrossRef citations to date
0
Altmetric
Research Article

Multifunctional properties of CdO nanostructures Synthesised through microwave assisted hydrothermal method

ORCID Icon, , , &
Pages 310-318 | Received 28 Mar 2018, Accepted 07 May 2018, Published online: 31 May 2018

References

  • Lotf AS, Mehdizadeh R, Sanati S, et al. Aqueous solution synthesis of plate-like Cd(OH)2 nanostructures and their conversion to CdO nanoparticles. Synth React Inorg Metal-Org Nano-Metal Chem. 2012;42:1285–1290.
  • Sathyaraj D, Jayaprakash R, Prakash T, et al. Impact of n-heptane as surfactant in the formation of CdO nanowires through microwave combustion. Appl Surf Sci. 2013;266:268–271.10.1016/j.apsusc.2012.12.009
  • Jia Y, Yu, X-Y, Luo T, et al. Shape-controlled synthesis of CdCO3 microcrystals and corresponding nanoporous CdO architectures. RSC Adv. 2012;2:10251–10254.10.1039/c2ra21103c
  • Azam A, Ahmed AS, Oves M, et al. Antimicrobial activity of metal oxide nanoparticles against Gram positive Gram negative bacteria: a comparative study. Int J Nanomed. 2012;7:6003–6009.10.2147/IJN
  • Guo Z, Li M, Liu J. Highly porous CdO nanowires: preparation based on hydroxy- and carbonate-containing cadmium compound precursor nanowires, gas sensing and optical properties. Nanotechnology. 2008;19:245611.10.1088/0957-4484/19/24/245611
  • Peng XS, Wang XF, Wang YW, et al. Novel method synthesis of CdO nanowires. J Phys D Appl Phys. 2002;35:L1–l4.
  • Eskizeybek V, Aver A, Chhowalla M. Structural and optical properties of CdO nanowires synthesized from Cd(OH)2 precursors by calcination. Cryst Res Technol. 2011;46:1093–1100.10.1002/crat.v46.10
  • Fan DH. Catalyst-free growth and crystal structures of CdO nanowires and nanotubes. J Cryst Growth. 2009;311:2300–2304.10.1016/j.jcrysgro.2009.01.088
  • Clement Sagaya Selvam NC, Thinesh Kumar R, Yogeenth K, et al. Simple and rapid synthesis of cadmium oxide (CdO) nanospheres by a microwave-assisted combustion method. Powder Tech. 2011;211:250–255.10.1016/j.powtec.2011.04.031
  • Ye M, Z H, Zheng W, et al. Ultralong cadmium hydroxide nanowires: synthesis characterization transformation into CdO nanostrands. Langmuir. 2007;23:9064–9068.10.1021/la070111c
  • Lashanizadegan M, Mirzadeh H. Synthesis of Cd (OH) 2 and CdO nanoparticles via a PEG-assisted route. J Ceram Process Res. 2012;13:389–391.
  • Yang Z-X, Zhong W, Yin Y-X, et al. Controllable synthesis of single-crystalline CdO and Cd(OH)2 nanowires by a simple hydrothermal approach. Nanoscale Res Lett. 2010;5:961–965.10.1007/s11671-010-9589-y
  • Krishnakumar T, Jayaprakash R, Prakash T, et al. CdO-based nanostructures as novel CO2 gas sensors. Nanotechnology. 2011;22:325501.10.1088/0957-4484/22/32/325501
  • Karthik K, Dhanuskodi S. Structural and optical properties of microwave assisted CdO-NiO nanocomposite. AIP Conf. Proc. 2016;1731:050021.10.1063/1.4947675
  • Theivasanthi T, Alagar M. Konjac biomolecules assisted–rod/spherical shaped lead nano powder synthesized by electrolytic process and its characterization Studies. Nano Biomed Eng. 2013;5(1):11–19.
  • Sahai A, Goswami N. Structural and vibrational properties of ZnO nanoparticles synthesized by the chemical precipitation method. Physica E. 2014;58:130–137.10.1016/j.physe.2013.12.009
  • John R, Rajakumari R. Synthesis and characterization of rare earth ion doped nano ZnO. Nano-Micro Lett. 2012;4(2):65–72.10.1007/BF03353694
  • Akhlaghi S, Kalaee M, Mazinani S, et al. Effect of zinc oxide nanoparticles on isothermal cure kinetics, morphology and mechanical properties of EPDM rubber. Thermochim Acta. 2012;527:91–98.10.1016/j.tca.2011.10.015
  • Tatarchuk TR, Paliychuk ND, Bououdina M, et al. Effect of cobalt substitution on structural, elastic, magnetic and optical properties of zinc ferrite nanoparticles. J Alloys Compd. 2018;731:1256–1266.10.1016/j.jallcom.2017.10.103
  • Rajesh Babu B, Tatarchuk T. Elastic properties and antistructural modeling for Nickel-Zinc ferrite-aluminates. Mater Chem Phys. 2018;207:534–541.10.1016/j.matchemphys.2017.12.084
  • Sivakumar S, Venkatesan A, Soundhirarajan P, et al. Synthesis, characterizations and anti-bacterial activities of pure and Ag doped CdO nanoparticles by chemical precipitation method. Spectrochimic Acta Part A Mol Biomol Spectrosc. 2015;136:1751–1759.10.1016/j.saa.2014.10.078
  • Kumar Sumeet, Ojha Animesh K. Synthesis, characterizations and antimicrobial activities of well dispersed ultra-long CdO nanowires. AIP Adv. 2013;3:052109.10.1063/1.4804930
  • Dimonte R, Fornasiero P, Graziani M, Kaspar J. Oxygen storage and catalytic NO removal promoted by CeO2 containing mixed oxides. J Alloys Compd. 1998;277:877–885.
  • Suresh R, Ponnuswamy V, Mariappan R. Effect of annealing temperature on the microstructural, optical and electrical properties of CeO2 nanoparticles by chemical precipitation method. Appl Surf Sci. 2013;273:457–464.10.1016/j.apsusc.2013.02.062
  • Balachandran S, Selvam K, Babu B, et al. The simple hydrothermal synthesis of Ag–ZnO–SnO2 nanochain and its multiple applications. Dalton Trans. 2013;42:16365–16374.10.1039/c3dt51192 h
  • Lamba R, Umar A, Mehta SK, et al. Well-crystalline porous ZnO–SnO2 nanosheets: an effective visible-light driven photocatalyst and highly sensitive smart sensor material. Talanta. 2015;131:490–498.10.1016/j.talanta.2014.07.096
  • Mardlroosi A, Mahjoub AR, Fakhri H. Efficient visible light photocatalytic activity based on magnetic graphene oxide decorated ZnO/NiO. J Mater Sci Mater Electron. 2017;28:11722–11732.
  • Anil Kumar MR, Nagaswarupa HP, Ananthu Raju KS, et al. Banyan latex: a facile fuel for the multifunctional properties of MgO nanoparticles prepared via auto ignited combustion route. Mater Res Express. 2015;2:95004–95021.10.1088/2053-1591/2/9/095004
  • Bagheri M, Mahjoub AR, Mehri B. Enhanced photocatalytic degradation of congo red by solvothermally synthesized CuInSe2–ZnO nanocomposites. RSC Adv. 2014;4:21757–21764.10.1039/c4ra01753f
  • Guy N, Ozacar M. The influence of noble metals on photocatalytic activity of ZnO for Congo red degradation. Int J Hydrogen Energy. 2016;41:21000–21112.
  • Poor MHS, Khatami M, Azizi H, et al. Cytotoxic activity of biosynthesized Ag nanoparticles by Plantago major towards a human breast cancer cell line. Rend Lincei. 2017;28:693–699.10.1007/s12210-017-0641-z
  • Mortazavi SM, Khatami M, Sharifi I, et al. Bacterial biosynthesis of gold nanoparticles using Salmonella enterica subsp. enterica serovar Typhi isolated from blood and stool specimens of patients. J Clust Sci. 2017;28:2997–3007.10.1007/s10876-017-1267-0
  • Khatami M, Sharifi I, Nobre MAL, et al. Waste-grass-mediated green synthesis of silver nanoparticles and evaluation of their anticancer, antifungal and antibacterial activity. Green Chem Lett Rev. 2018;11(2):125–134.10.1080/17518253.2018.1444797
  • Khatami M, Alijani HQ, Nejad MS, et al. Core@shell nanoparticles: greener synthesis using natural plant products. Appl Sci. 2018;8:411–427. DOI:10.3390/app8030411.
  • Karthik K, Dhanuskodi S, Gobinath C, et al. Microwave-assisted synthesis of CdO–ZnO nanocomposite and its antibacterial activity against human pathogens. Spectrochimic Acta Part A Mol Biomol Spectrosc. 2015;139:7–12.10.1016/j.saa.2014.11.079
  • Lalithambika KC, Thanyumanavan A, Ravichandran K, et al. Photocatalytic and antibacterial activities of eco-friendly green synthesized ZnO and NiO nanoparticles. J. Mater. Sci. 2016;27:1–7.
  • Robert Xavier A, Ravichandran AT, Ravichandran K, et al. Sm doping effect on structural, morphological, luminescence and antibacterial activity of CdO nanoparticles. J. Mater. Sci. 2016; 27:11182–11187.
  • Arunadevi R, Kavitha B, Rajarajan M, et al. Investigation of the drastic improvement of photocatalytic degradation of Congo red by monoclinic Cd, Ba-CuO nanoparticles and its antimicrobial activities. Surf Interfaces. 2018;10:32–44.10.1016/j.surfin.2017.11.004
  • Karthik K, Dhanuskodi S, Gobinath C, et al. Photocatalytic and antibacterial activities of hydrothermally prepared CdO nanoparticles. J Mater Sci Mater Electron. 2017;28:11420–11429.
  • Karthik K, Dhanuskodi S, Gobinath C, et al. Andrographis paniculata extract mediated green synthesis of CdO nanoparticles and its electrochemical and antibacterial studies. J Mater Sci Mater Electron. 2017;28:7991–8001.
  • Karthik K, Dhanuskodi S, Prabukumar S, et al. Microwave assisted green synthesis of MgO nanorods and their antibacterial and anti-breast cancer activities. Mater Lett. 2017;206:217–220.10.1016/j.matlet.2017.07.004
  • Vijayalakshmi K, Sivaraj D. Enhanced antibacterial activity of Cr doped ZnO nanorods synthesized using microwave processing. RSC Adv. 2015;5:64861–64869.
  • Karthik K, Dhanuskodi S, Prabukumar S, et al. Dielectric and antibacterial studies of microwave assisted calcium hydroxide nanoparticles. J Mater Sci Mater Electron. 2017;28:16509–16518.
  • Karthik K, Dhanuskodi S, Prabukumar CS, et al. Nanostructured CdO-NiO composite for multifunctional applications. J Phys Chem Solids. 2018;112:106–118.10.1016/j.jpcs.2017.09.016
  • Karthik K, Dhanuskodi S, Prabukumar S, et al. Multifunctional properties of microwave assisted CdO–NiO–ZnO mixed metal oxide nanocomposite: enhanced photocatalytic and antibacterial activities. J Mater Sci Mater Electron. 2018;29:5459–5471.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.