418
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Epoxy and quantum dots-based nanocomposites: achievements and applications

Pages 235-243 | Received 23 Apr 2019, Accepted 21 Jun 2019, Published online: 26 Jun 2019

References

  • Bilyeu B, Brostow W, Menard KP. Epoxy thermosets and their applications. I. Chemical structures. J Mater Ed. 1999;21:281.
  • Bilyeu B, Brostow W, Menard KP. Epoxy thermosets and their applications. II. Thermal analysis. J Mater Ed. 2000;22:107.
  • Bilyeu B, Brostow W, Menard KP. Epoxy thermosets and their applications. III. Kinetic equations and models. J Mater Ed. 2001;23:189.
  • Bilyeu B, Brostow W, Menard KP. Separation of gelation from vitrification in curing of a fiber-reinforced epoxy composite. Polym Compos. 2002;23:1111.
  • Jangra P, Dahiya JB. Effects of nanoclay and flame retardant additives on glass transition temperature, thermal stability and flammability of epoxy composites. Mater Res Innovat. 2018;22:387–395.
  • Kausar A., 2018. Nanodiamond Reinforced Epoxy Composite: Prospective Material for Coatings. In Advanced Coating Materials, L. Liang Q. Yang (Editors), Wiley Scrivener Publishing, Chapter 9, pp.255-274.
  • Kausar A. An investigation on epoxy/poly (urethane-amide)-based interpenetrating polymer network reinforced with an organic nanoparticle. Mater Res Innovat. 2018;22:58–68.
  • James Asirvatham JS, Fujita H, Fernández-Delgado N, et al. Delta doping and positioning effects of type II GaSb quantum dots in GaAs solar cell. Mater Res Innovat. 2015;19:512–516.
  • Kausar A. Polymer/carbon-based quantum dot nanocomposite: forthcoming materials for technical application. J Macromol Sci A. 2019; 56;1–16.
  • Zheng XT, Ananthanarayanan A, Luo KQ, et al. Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small. 1620–1636;2015(11).
  • Gharibshahi E, Saion E. Quantum mechanical calculations of optical absorption of CdS and CdSe quantum dots. Mater Res Innovat. 2011;15:s67–s70.
  • Wang LQ, Feng JM. Improved energy conversion efficiency of CdS quantum dots sensitised solar cells using TiO2/carbon nanotube nanocomposite photoanodes. Mater Res Innovat. 2015;19:S5–41.
  • Zou W, Du ZJ, Li HQ, et al. A transparent and luminescent epoxy nanocomposite containing CdSe QDs with amido group-functionalized ligands. J Mater Chem. 2011;21:13276–13282.
  • Weaver J, Zakeri R, Aouadi S, et al. Synthesis and characterization of quantum dot–polymer composites. J Mater Chem. 2009;19:3198–3206.
  • Lee J, Sundar VC, Heine JR, et al. Full color emission from II–VI semiconductor quantum dot–polymer composites. Adv Mater. 2000;12:1102–1105.
  • Selvan ST, Patra PK, Ang CY, et al. Synthesis of silica‐coated semiconductor and magnetic quantum dots and their use in the imaging of live cells. Angew Chem Int Ed. 2007;46:2448–2452.
  • Jang E, Jun S, Jang H, et al. White‐light‐emitting diodes with quantum dot color converters for display backlights. Adv Mater. 2010;22:3076–3080.
  • Lee YL, Lo YS. Highly efficient quantum‐dot‐sensitized solar cell based on co‐sensitization of CdS/CdSe. Adv Funct Mater. 2009;19:604–609.
  • Medintz IL, Clapp AR, Melinger JS, et al. A reagentless biosensing assembly based on quantum dot–donor Förster resonance energy transfer. Adv Mater. 2005;17:2450–2455.
  • Silindir‐Gunay M, Sarcan ET, Ozer AY. Near‐infrared imaging of diseases: A nanocarrier approach. Drug Dev Res. 2019.
  • Chebrolu VT, Kim HJ. Recent progress in quantum dot sensitized solar cells (QDSSC): A review of photoanode, sensitizer, electrolyte, and counter electrode (CE). J Mater Chem C. 2019;7:4911–4933.
  • Wang Y, Hu A. Carbon quantum dots: synthesis, properties and applications. J Mater Chem C. 2014;2:6921–6939.
  • Tomczak N, Jańczewski D, Han M, et al. Designer polymer–quantum dot architectures. Prog Polym Sci. 2009;34:393–430.
  • Jańczewski D, Tomczak N, Han MY, et al. Synthesis of functionalized amphiphilic polymers for coating quantum dots. Nat Protocol. 2011;6:1546.
  • Das G, Karak N. Thermostable and flame retardant Mesua ferrea L. seed oil based nonhalogenated epoxy resin/clay nanocomposites. Prog Org Coat. 2010;69:495–503.
  • Chen L, Chai S, Liu K, et al. Enhanced epoxy/silica composites mechanical properties by introducing graphene oxide to the interface. Appl Mater Interfaces. 2012;4:4398–4404.
  • Brostow W, Hagg Lobland HE, Narkis M. Sliding wear, viscoelasticity and brittleness of polymers. J Mater Res. 2006;21:2422.
  • Brostow W, Hagg Lobland HE, Khoja S. Brittleness and toughness of polymers and other materials. Mater Lett. 2015;159:478.
  • Brostow W, Hagg Lobland HE. Materials: introduction and applications. John Wiley & Sons; 2017.
  • Shah R, Datashvili T, Cai T, et al. The effects of functionalized reduced graphene oxide on the frictional and wear properties of epoxy resin. Mater Res Innovat. 2015;19; 97-106.
  • Zhang H, Han J, Yang B. Structural fabrication and functional modulation of nanoparticle–polymer composites. Adv Funct Mater. 2010;20:1533–1550.
  • Shin Y, Lee J, Yang J, et al. Mass production of graphene quantum dots by one-pot synthesis directly from graphite in high yield. Small. 2014;10:866–870.
  • Zheng X, Than A, Ananthanaraya A, et al. Graphene quantum dots as universal fluorophores and their use in revealing regulated trafficking of insulin receptors in adipocytes. ACS Nano. 2013;7:6278–6286.
  • Son DI, Kwon BW, Park DH, et al. Emissive ZnO–graphene quantum dots for white-light-emitting diodes. Nat Nanotechnol. 2012;7:465.
  • Karimi B, Ramezanzadeh B. A comparative study on the effects of ultrathin luminescent graphene oxide quantum dot (GOQD) and graphene oxide (GO) nanosheets on the interfacial interactions and mechanical properties of an epoxy composite. J Colloid Interface Sci. 2017;493:62–76.
  • Stan CS, Albu C, Coroaba A, et al. One step synthesis of fluorescent carbon dots through pyrolysis of N-hydroxysuccinimide. J Mater Chem C. 2015;3:789–795.
  • Li Q, Ohulchanskyy TY, Liu R, et al. Photoluminescent carbon dots as biocompatible nanoprobes for targeting cancer cells in vitro. J Phys Chem C. 2010;114:12062–12068.
  • Qiao ZA, Wang Y, Gao Y, et al. Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation. Chem Commun. 2010;46:8812–8814.
  • Zhang P, Li W, Zhai X, et al. A facile and versatile approach to biocompatible “fluorescent polymers” from polymerizable carbon nanodots. Chem Commun. 2012;48:10431–10433.
  • De B, Voit B, Karak N. Transparent luminescent hyperbranched epoxy/carbon oxide dot nanocomposites with outstanding toughness and ductility. ACS Appl Mater Interfaces. 2013;5:10027–10034.
  • De B, Voit B, Karak N. Carbon dot reduced Cu2O nanohybrid/hyperbranched epoxy nanocomposite: mechanical, thermal and photocatalytic activity. RSC Adv. 2014;4:58453–58459.
  • De B, Kumar M, Mandal BB, et al. An in situ prepared photo-luminescent transparent biocompatible hyperbranched epoxy/carbon dot nanocomposite. RSC Adv. 2015;5:74692–74704.
  • Li S, Toprak MS, Jo YS, et al. Bulk synthesis of transparent and homogeneous polymeric hybrid materials with ZnO quantum dots and PMMA. Adv Mater. 2007;19:4347–4352.
  • Bermudez M-D, Brostow W, Carrion-Vilches FJ, et al. Scratch resistance of polycarbonate containing ZnO nanoparticles: effects of sliding direction. J Nanosci Nanotechnol. 2010;10:6683.
  • Koch U, Fojtik A, Weller H, et al. Photochemistry of semiconductor colloids. Preparation of extremely small ZnO particles, fluorescence phenomena and size quantization effects. Chem Phys Lett. 1985;122:507–510.
  • Sun D, Sue HJ, Miyatake N. Optical properties of ZnO quantum dots in epoxy with controlled dispersion. J Phys Chem C. 2008;112:16002–16010.
  • Yang Y, Li YQ, Fu SY, et al. Transparent and light-emitting epoxy nanocomposites containing ZnO quantum dots as encapsulating materials for solid state lighting. J Phys Chem C. 2008;112:10553–10558.
  • Abdullah M, Lenggoro IW, Okuyama K, et al. In situ synthesis of polymer nanocomposite electrolytes emitting a high luminescence with a tunable wavelength. J Phys Chem C. 1957–1961;2003(107).
  • Xiong HM. Photoluminescent ZnO nanoparticles modified by polymers. J Mater Chem. 2010;20:4251–4262.
  • Kołodziejczak-Radzimska A, Jesionowski T. Zinc oxide-from synthesis to application: a review. Materials. 2014;7:2833–2881.
  • de Santana JF, Pilla V, Silva AC, et al. Optical characterization of core–shell quantum dots embedded in synthetic saliva: temporal dynamics. J Photochem Photobiol B: Biol. 2015;151:208–212.
  • Hoppe CE, Williams RJ. Tailoring the self-assembly of linear alkyl chains for the design of advanced materials with technological applications. J Colloid Interface Sci. 2018;513:911–922.
  • Pilla V, Munin E. Fluorescence quantum efficiency of CdSe/ZnS quantum dots functionalized with amine or carboxyl groups. J Nanopart Res. 2012;14:1147.
  • Batalla J, Cabrera H, San Martín-Martínez E, et al. Encapsulation efficiency of CdSe/ZnS quantum dots by liposomes determined by thermal lens microscopy. Biomed Optic Exp. 2015;6:3898–3906.
  • van Sark WG, Frederix PL, Bol AA, et al. Blueing, bleaching, and blinking of single CdSe/ZnS quantum dots. Chem Phys Chem. 2002;3:871–879.
  • Smith AM, Duan H, Rhyner MN. A systematic examination of surface coatings on the optical and chemical properties of semiconductor quantum dots. Phys Chem. 2006;8:3895–3903.
  • Zou W, Du ZJ, Li HQ, et al. Fabrication of carboxyl functionalized CdSe quantum dots via ligands self-assembly and CdSe/epoxy fluorescence nanocomposites. Polymer. 1938–1943;2011(52).
  • Yang YA, Wu H, Williams KR, et al. Synthesis of CdSe and CdTe nanocrystals without precursor injection. Angew Chem. 2005;117:6870–6873.
  • Yu WW, Peng X. Formation of high‐quality CdS and other II–VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. Angew Chem Int Ed. 2002;41:2368–2371.
  • Wei H, Ding D, Wei S, et al. Anticorrosive conductive polyurethane multiwalled carbon nanotube nanocomposites. J Mater Chem A. 2013;1:10805–10813.
  • Ma Y, Di H, Yu Z, et al. Fabrication of silicadecorated graphene oxide nanohybrids and the properties of composite epoxy coatings research. Appl Surf Sci. 2016;360:936–945.
  • Ye X, Lin Z, Zhang H, et al. Protecting carbon steel from corrosion by laser in situ grown graphene films. Carbon. 2015;94:326–334.
  • Li P, He X, Huang TC, et al. Highly effective anti-corrosion epoxy spray coatings containing self-assembled clay in smectic order. J Mater Chem A. 2015;3:2669–2676.
  • Pourhashem S, Vaezi MR, Rashidi AM. Investigating the effect of SiO2-graphene oxide hybrid as inorganic nanofiller on corrosion protection properties of epoxy coatings. Surf Coat Technol. 2017;311:282–294.
  • Pourhashem S, Rashidi AM, Vaezi MR, et al. Distinctive roles of silane coupling agents on the corrosion inhibition performance of graphene oxide in epoxy coatings. Prog Org Coat. 2017;111:47–56.
  • Pourhashem S, Ghasemy E, Rashidi A, et al. Corrosion protection properties of novel epoxy nanocomposite coatings containing silane functionalized graphene quantum dots. J Alloys Comp. 2018;731:1112–1118.
  • Chen L, Jin H, Xu Z, et al. A design of gradient interphase reinforced by silanized graphene oxide and its effect on carbon fiber/epoxy interface. Mater Chem Phys. 2014;145:186–196.
  • Lee CY, Bae JH, Kim TY, et al. Using silane-functionalized graphene oxides for enhancing the interfacial bonding strength of carbon/epoxy composites. Compos Part A: Appl Sci. 2015;75:11–17.
  • Li X, Rui M, Song J, et al. Carbon and graphene quantum dots for optoelectronic and energy devices: a review. Adv Funct Mater. 2015;25:4929–4947.
  • Heliotis G, Stavrinou PN, Bradley DDC, et al. Spectral conversion of InGaN ultraviolet microarray light-emitting diodes using fluorene-based red-, green-, blue-, and white-light-emitting polymer overlayer films. Appl Phys Lett. 2005;87:103505.
  • Chen HS, Hsu CK, Hong HY. InGaN-CdSe-ZnSe quantum dots white LEDs. IEEE Photon Technol Lett. 2006;18:193.
  • Nizamoglu S, Ozel T, Sari E, et al. White light generation using CdSe/ZnS core–shell nanocrystals hybridized with InGaN/GaN light emitting diodes. Nanotechnology. 2007;18:065709.
  • Wang H, Lee KS, Ryu JH, et al. White light emitting diodes realized by using an active packaging method with CdSe/ZnS quantum dots dispersed in photosensitive epoxy resins. Nanotechnology. 2008;19:145202.
  • Zhao B, Yao Y, Gao M, et al. Doped quantum dot@ silica nanocomposites for white light-emitting diodes. Nanoscale. 2015;7:17231–17236.
  • Sakoğlu U, Tyo JS, Hayat MM, et al. Spectrally adaptive infrared photodetectors with bias-tunable quantum dots. Josa B. 2004;21:7–17.
  • Zhu J, Zhu H, Xu H, et al. Ge-based mid-infrared blocked-impurity-band photodetectors. Infr Phys Technol. 2018;92:13–17.
  • Jun S, Choi SB, Han CJ, et al. Fabrication and characterization of a capacitive photodetector comprising a ZnS/Cu Particle/Poly (vinyl butyral) composite. ACS Appl Mater Interfaces. 2019. DOI:10.1021/acsami.8b20136
  • Zhou X, Li N, Lu W. Progress in quantum well and quantum cascade infrared photodetectors in SITP. Chin Phys B. 2019;28:027801.
  • Phillips J, Bhattacharya P, Kennerly SW, et al. Self-assembled InAs-GaAs quantum-dot intersubband detectors. IEEE J Quantum Electron. 1999;35:936–943.
  • Doane TL, Burda C. C. The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem Soc Rev. 2012;41:2885–2911.
  • Wolfbeis OS. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem Soc Rev. 2015;44:4743–4768.
  • Luo PG, Yang F, Yang S-T, et al. Carbon-based quantum dots for fluorescence imaging of cells and tissues. RSC Adv. 2014;4:10791.
  • Zhu S, Zhang J, Qiao C, et al. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem Commun. 2011;47:6858–6860.
  • Zhang WF, Jin LM, Yu SF, et al. Wide-bandwidth lasing from C-dot/epoxy nanocomposite Fabry–perot cavities with ultralow threshold. J Mater Chem C. 2014;2:1525–1531.
  • Dong Y, Pang H, Yang HB, et al. Carbon‐based dots co‐doped with nitrogen and sulfur for high quantum yield and excitation‐independent emission. Angew Chem Int Ed. 2013;52:7800–7804.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.