243
Views
45
CrossRef citations to date
0
Altmetric
Research Article

Surfactant and polymer layered carbon composite electrochemical sensor for the analysis of estriol with ciprofloxacin

ORCID Icon & ORCID Icon
Pages 349-362 | Received 30 Aug 2019, Accepted 08 Oct 2019, Published online: 29 Oct 2019

References

  • Leticia MO, Deonir A, Luiz CS, et al. Electroanalytical thread-device for estriol determination using screen-printed carbon electrodes modified with carbon nanotubes. Sens Actuator B-Chem. 2017;241:978–984.
  • Kuhl H. Pharmacology of estrogens and progestogens: influence of different routes of administration. Climacteric. 2005;8:3–63.
  • Numazawa M, Nagaoka M, Tsuji M, et al. Efficient synthesis of estriol 16-glucuronide via 2,4,16α-tribromoestrone. J Chem Soc Chem Commun. 1981;8:383–384.
  • Cincotto FH, Canevari TC, Machado SAS, et al. Reduced graphene oxide-Sb2O5 hybrid nanomaterial for the design of a laccase-based amperometric biosensor for estriol. Electrochim Acta. 2015;174:332–339.
  • Fu HJ, Wang Y, Dong XX, et al. Application of nickel cobalt oxide nanoflakes for electrochemical sensing of estriol in milk. RSC Adv. 2016;6:65588–65593.
  • Manjunatha JG. Electroanalysis of estriol hormone using electrochemical sensor. Sens Biosensing Res. 2017;16:79–84.
  • Gan P, Compton RG, Foord JS. The voltammetry and electroanalysis of some estrogenic compounds at modified diamond electrodes. Electroanalysis. 2013;25:2423–2434.
  • Chen TS, Huang KL. Effect of operating parameters on electrochemical degradation of estriol (E3). Int J Electrochem Sci. 2013;8:6343–6353.
  • Tu DZ, Wu HL, Li YN, et al. Measuring estriol and estrone simultaneously in liquid cosmetic samples using second-order calibration coupled with excitation–emission matrix fluorescence based on region selection. Anal Methods. 2012;4:222–229.
  • Cesarino I, Cincotto FH, Machado SAS. A synergistic combination of reduced graphene oxide and antimony nanoparticles for estriol hormone detection. Sens Actuator B-Chem. 2015;210:453–459.
  • Reis FRW, Araujo JCD, Vieira EM. Hormônios sexuais estrógenos: contaminantes bioativos. Quim Nova. 2006;29:817–822.
  • Huang X, Yuan D, Huang B. Determination of steroid sex hormones in urine matrix by stir bar sorptive extraction based on monolithic material and liquid chromatography with diode array detection. Talanta. 2008;75:172–177.
  • Fonseca AP, Lima DLD, Esteves VI. Degradation by solar radiation of estrogenic hormones monitored by UV-Visible spectroscopy and capillary electrophoresis. Water Air Soil Pollut. 2011;215:441–447.
  • Tagawa N, Tsuruta H, Fujinami A, et al. Simultaneous determination of estriol and estriol 3-sulfate in serum by column-switching semi-micro high-performance liquid chromatography with ultraviolet and electrochemical detection. J Chromatogr B Biomed Sci Appl. 1999;723:39–45.
  • Penalver A, Pocurull E, Borrull F, et al. Method based on solid-phase microextraction–high-performance liquid chromatography with UV and electrochemical detection to determine estrogenic compounds in water samples. J Chromatogr A. 2002;964:153–160.
  • Su P, Zhang XX, Wang YC, et al. Direct immunoassay of estriol in pregnancy serum by capillary electrophoresis with laser-induced fluorescence detector. Talanta. 2003;60:969–975.
  • Flor S, Lucangioli S, Contin M, et al. Simultaneous determination of nine endogenous steroids in human urine by polymeric-mixed micelle capillary electrophoresis. Electrophoresis. 2010;31:3305–3313.
  • Wang L, Yuan F, Chen HQ, et al. Chemiluminescence of CdTe nanocrystals catalyzed by sodium hexametaphosphate and its sensitive application for determination of estrogens. Spectrochim Acta A Mol Biomol Spectrosc. 2012;9:295–300.
  • Koh YKK, Chiu TY, Boobis A, et al. Determination of steroid estrogens in wastewater by high-performance liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2007;1173:81–87.
  • Luo X, Li G, Hu Y. In-tube solid-phase microextraction based on NH2-MIL- 53(Al)-polymer monolithic column for online coupling with high-performance liquid chromatography for directly sensitive analysis of estrogens in human urine. Talanta. 2017;165:377–383.
  • Pacakova V, Loukotkova L, Bosakova Z, et al. Analysis for estrogens as environmental pollutants - A review. J Sep Sci. 2009;32:867–882.
  • Tang Y, Zhao S, Wu Y, et al. A direct competitive inhibition time-resolved fluoroimmunoassay for the detection of unconjugated estriol in serum of pregnant women, Anal. Methods. 2013;5:4068–4073.
  • Li Z, Wang S, Lee NA, et al. Development of a solid-phase extraction-enzyme-linked immunosorbent assay method for the determination of estrone in water. Anal Chim Acta. 2004;503:171–177.
  • O’Dea P, Garcia AC, Ordieres AJM, et al. Determination of Ciprofloxacin by differential pulse polarography. Electroanalysis. 1990;2:637–641.
  • Garbellini GS, Rocha-Filho RC, Fatibello-Filho O. Voltammetric determination of ciprofloxacin in urine samples and its interaction with dsDNA on a cathodically pretreated boron-doped diamond electrode. Anal Methods. 2015;7:3411–3418.
  • Yi H, Li C. Voltammetric determination of Ciprofloxacin based on the enhancement effect of cetyltrimethylammonium bromide (CTAB) at carbon paste electrode. Russ J Electrochem. 2007;43(12):1377–1381.
  • Manjunatha JG. A novel poly (glycine) biosensor towards the detection of indigo carmine: A voltammetric study. J Food Drug Anal. 2018;26(1):292–299.
  • Manjunatha JG. A new electrochemical sensor based on modified carbon nanotube mixture paste electrode for voltammetric determination of resorcinol. Asian J Pharm Clin Res. 2017;10:295–300.
  • Jayaprakash GK, Kumara Swamy BE, Casillas N, et al. Analytical Fukui and cyclic voltammetric studies on ferrocene modified carbon electrodes and effect of Triton X-100 by immobilization method. Electrochim Acta. 2017;258:1025–1034.
  • Shetti NP, Bukkitgar SD, Reddy KR, et al. ZnO-based nanostructured electrodes for electrochemical sensors and biosensors in biomedical applications. Biosens Bioelectron. 2019;141:111417.
  • Kumar S, Bukkitgar SD, Singh S, et al. Electrochemical sensors and biosensors based on graphene functionalized with metal oxide nanostructures for healthcare applications. Chem Sel. 2019;4:5322–5337.
  • Jayaprakash GK, Flores-Moreno R. Quantum chemical study of Triton X-100 modified graphene surface. Electrochimi Acta. 2017;248:225–231.
  • Bukkitgar SD, Shetti NP, Kulkarni RM. Construction of nanoparticles composite sensor for atorvastatin and its determination in pharmaceutical and urine samples. Sens Actuator B-Chem. 2018;255:1462–1470.
  • Raril C, Manjunatha JG, Tigari G, et al. Fabrication of the tartrazine voltammetric sensor based on surfactant modified carbon paste electrode. Open Access J Chem. 2018;2:21–26.
  • Shikandar DB, Shetti NP, Kulkarni RM, et al. Silver-doped titania modified carbon electrode for electrochemical studies of furantril. ECS J Solid State Sci Technol. 2018;7:Q3215–Q3220.
  • Jayaprakash GK, Kumara Swamy BE, Nicole Gonzalez RH, et al. Quantum chemical and electrochemical studies of lysine modified carbon paste electrode surfaces for sensing dopamine. New J Chem. 2018;42:4501–4506.
  • Shetti NP, Bukkitgar SD, Reddy KR, et al. Nanostructured titanium oxide hybrids-based electrochemical biosensors for healthcare applications. Colloids Surf B Biointerfaces. 2019;178:385–394.
  • Bukkitgar SD, Shetti NP, Kulkarni RM, et al. Electro-catalytic behavior of Mg-doped ZnO nano-flakes for oxidation of anti-inflammatory drug. J Electrochem Soc. 2019;166:B3072–B3078.
  • Ganjali MR, Beitollahi H, Zaimbashi R, et al. Voltammetric determination of dopamine using glassy carbon electrode modified with ZnO/Al2O3 nanocomposite. Int J Electrochem Sci. 2018;13:2519–2529.
  • Reddy S, Xu X, Guo T, et al. Allotropic carbon (graphene oxide and reduced graphene oxide) based biomaterials for neural regeneration. Curr Opin Biomed Eng. 2018;6:120–129.
  • Manjunatha JG, Deraman M, Basri NH, et al. Sodium dodecyl sulfate modified carbon nanotubes paste electrode as a novel sensor for the simultaneous determination of dopamine, ascorbic acid, and uric acid. Rendus Chimie. 2014;17:465–476.
  • Shetti NP, Nayak DS, Kuchinad GT, et al. Electrochemical behavior of thiosalicylic acid at γ-Fe 2 O 3 nanoparticles and clay composite carbon electrode. Electrochimi Acta. 2018;269:204–211.
  • Hossein S, Beitollahi H, Abdol-Hamid HM, et al. Voltammetric determination of glutathione using a modified single walled carbon nanotubes paste electrode. Anal Bioanal Electrochem. 2014;6:67–79.
  • Shetti NP, Nayak DS, Malode SJ, et al. Sensors based on ruthenium-doped TiO2 nanoparticles loaded into multi-walled carbon nanotubes for the detection of flufenamic acid and mefenamic acid. Anal Chim Acta. 2019;1051:58–72.
  • Beitollahi H, Karimi-Maleh H, Khabazzadeh H. Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2-(4-Oxo-3-phenyl-3,4-dihydro-quinazolinyl)-N′-phenyl-hydrazinecarbothioamide. Anal Chem. 2008;80:9848–9851.
  • Mohammad MM, Beitollahi H, Somayeh T, et al. Nanostructure electrochemical sensor for voltammetric determination of vitamin C in the presence of vitamin B6: application to real sample analysis. Int J Electrochem Sci. 2016;11:7849–7860.
  • Tigari G, Manjunatha JG, Raril C, et al. Determination of riboflavin at carbon nanotube paste electrodes modified with an anionic surfactant. Chem Sel. 2019;4:2168–2173.
  • Beitollahi H, Mohammadi S. Selective voltammetric determination of norepinephrine in the presence of acetaminophen and tryptophan on the surface of a modified carbon nanotube paste electrode. Mater Sci Eng C. 2013;33:3214–3219.
  • Sakineh EB, Beitollahi H, Somayeh T, et al. Voltammetric sensor based on 1-benzyl-4-ferrocenyl-1H- [1,2,3]-triazole/carbon nanotube modified glassy carbon electrode; detection of hydrochlorothiazide in the presence of propranolol. Int J Electrochem Sci. 2016;11:10874–10883.
  • Pang H, Zhang Y, Cheng T, et al. Uniform manganese hexacyanoferrate hydrate nanocubes featuring superior performance for low-cost supercapacitors and nonenzymatic electrochemical sensors. Nanoscale. 2015;7:16012–16019.
  • Beitollahi H, Tajik S. Construction of a nanostructure-based electrochemical sensor for voltammetric determination of bisphenol A. Environ Monit Assess. 2015;187:257.
  • Sathish R, Kumara Swamy BE, Aruna S, et al. Preparation of NiO/ZnO hybrid nanoparticles for electrochemical sensing of dopamine and uric acid. Cheml Sens. 2012;2:1–8.
  • Dong X, Li M, Feng N, et al. A nanoporous MgO based nonenzymatic electrochemical sensor for rapid screening of hydrogen peroxide in milk. RSC Adv. 2015;5:86485–86489.
  • Beitollahi H, Tajik S, Asadi MH, et al. Application of a modified graphene nanosheet paste electrode for voltammetric determination of methyldopa in urine and pharmaceutical formulation. J Anal Sci Technol. 2014;5:1–9.
  • Sathish R, Kumara Swamy BE, Chandrashekar BN, et al. Cationic surfactants–assisted synthesis of ZnO nanoparticles and their modified carbon paste electrode for electrochemical investigation of dopamine. Anal Bioanal Electrochem. 2012;4:186–196.
  • Amrutha BM, Manjunatha JG, Aarti Bhatt S, et al. Electrochemical analysis of evans blue by surfactant modified carbon nanotube paste electrode. J Mater Environ Sci. 2019;10:668–676.
  • Beitollahi H, Dourandish Z, Tajik S, et al. Application of graphite screen printed electrode modified with dysprosium tungstate nanoparticles in voltammetric determination of epinephrine in the presence of acetylcholine. J Rare Earths. 2018;36:750–757.
  • Sathish R, Kumara Swamy BE, Jayadevappa H. ZnO nanoparticle/carbon paste electrode as an electrochemical sensor for the detection of dopamine. IJSR. 2012;1:96–101.
  • Li Y, Kuwabara H, Gong YK, et al. Resonance energy transfer from dibucaine to acriflavine in polystyrene latex dispersions. J Photoch Photobio B. 2003;70:171–176.
  • Sharman VK, Sahare PD, Rastogi RC, et al. Excited state characteristics of acridine dyes: acriflavine and acridine orange. Spectrochim Acta A. 2003;59:1799–1804.
  • Atta NF, Darwish SA, Khalil SE, et al. Effect of surfactants on the voltammetric response and determination of an antihypertensive drug. Talanta. 2007;72:1438–1445.
  • Prinith NS, Manjunatha JG. Surfactant modified electrochemical sensor for determination of Anthrone-A cyclic voltammetry. Mater Sci Energy Technol. 2019;2:408–416.
  • Sinnott SB, Andrews R. Carbon nanotubes: synthesis, properties, and applications. Cri Rev Solid State. 2001;26:145–249.
  • Hareesha N, Manjunatha JG, Raril C, et al. Design of novel surfactant modified carbon nanotube paste electrochemical sensor for the sensitive investigation of tyrosine as a pharmaceutical drug. Adv Pharm Bull. 2019;9:132–137.
  • Pushpanjali PA, Manjunatha JG, Raril C, et al. Determination of indigo carmine at poly (adenine) modified carbon nanotube paste electrode. RJLBPCS. 2019;5:820–832.
  • Hareesha N, Manjunatha JG, Raril C, et al. Sensitive and selective electrochemical resolution of tyrosine with ascorbic acid through the development of electropolymerized alizarin sodium sulfonate modified carbon nanotube paste electrodes. ChemistrySelect. 2019;4:4559–4567.
  • Shetti NP, Malode SJ, Ilager D, et al. A novel electrochemical sensor for detection of molinate using ZnO nanoparticles loaded carbon electrode. Electroanalysis. 2019;31:1040–1049.
  • David K, Gosser VCH Jr. Cyclic voltammetry; simulation and analysis of reaction mechanisms, synthesis and reactivity in inorganic and metal-organic chemistry. 1994;24:1237–1238. Publisher: Taylor & Francis. DOI: 10.1080/00945719408001398.
  • Brocenschi RF, Rocha-Filho RC, Li L, et al. Comparative electrochemical response of estrone at glassy-carbon, nitrogen-containing tetrahedral amorphous carbon and boron-doped diamond thin-film electrodes. J Electroanal Chem. 2014;712:207–214.
  • Fotouhi L, Atoofi Z, Heravi MM. Interaction of Ciprofloxacin with DNA studied by spectroscopy and voltammetry at MWCNT/DNA modified glassy carbon electrode. Talanta. 2013;103:194–200.
  • Lavirons E. Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry. J Electroanal Chem. 1974;52:355–393.
  • Manjunatha JG, Gururaj KJ. Electro oxidation and determination of estriol using a surfactant modified nanotube paste electrode. Eurasian J Anal Chem. 2019;14:1–11.
  • Lin X, Li Y. A sensitive determination of estrogens with a Pt nano-clusters/multi-walled carbon nanotubes modified glassy carbon electrode. Biosens Bioelectron. 2006;22:253–259.
  • Jodar LV, Santos FA, Zucolotto V, et al. Electrochemical sensor for estriol hormone detection in biological and environmental samples. J Solid State Electro. 2017;22:1431–1438.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.