123
Views
5
CrossRef citations to date
0
Altmetric
Review

Nanocomposites of poly(ε-caprolactone) with nanocarbon and inorganic nanoparticles: a versatile platform for industrial applications

Pages 373-383 | Received 07 Aug 2019, Accepted 23 Oct 2019, Published online: 01 Nov 2019

References

  • Martins AF, Facchi SP, da Câmara PC, et al. Novel poly (ε-caprolactone)/amino-functionalized tannin electrospun membranes as scaffolds for tissue engineering. J Colloid Interface Sci. 2018;525:21–30.
  • Woo HJ, Majid SR, Arof AK. Transference number and structural analysis of proton conducting polymer electrolyte based on poly (ϵ-caprolactone). Mater Res Innovat. 2011;15:s49–s54.
  • Suebwongnat S, Monvisade P, Siriphannon P. Mechanical properties and bioactivity of calcium silicate/poly(ethylene terephthalate-co-caprolactone) composites. Mater Res Innovat. 2013;17:s118–s123.
  • Minář J, Brožek J, Michalcová A, et al. Functionalization of graphene oxide with poly (ε-caprolactone) for enhanced interfacial adhesion in polyamide 6 nanocomposites. Compos B: Eng. 2019;174:107019.
  • Kausar A. Applications of polymer/graphene nanocomposite membranes: a review. Mater Res Innovat. 2019;23:276–287.
  • Yang J, Sun W, Zhu D. Facile decoration of small-sized Au nanoparticles onto carbon nanotube by a simple noncovalent approach for efficient catalysis. Mater Res Innovat. 2017;21:215–221.
  • Kausar A. State-of-the-Art overview on polymer/POSS nanocomposite. Polym Plast Technol Eng. 2017;56:1401–1420.
  • Beltrán A, Valente AJ, Jiménez A, et al. Characterization of poly (ε-caprolactone)-based nanocomposites containing hydroxytyrosol for active food packaging. J Agricult Food Chem. 2014;62:2244–2252.
  • Bugatti V, Costantino U, Gorrasi G, et al. Nano-hybrids incorporation into poly (ε-caprolactone) for multifunctional applications: mechanical and barrier properties. Eur Polym J. 2010;46:418–427.
  • Taghavi MA, Rabiee SM, Jahanshahi M, et al. Electrospun poly-ε-caprolactone (PCL)/Dicalcium Phosphate Dihydrate (DCPD) composite scaffold for tissue engineering application. Molecul Biotechnol. 2019;61:345–354.
  • Azimi B, Nourpanah P, Rabiee M, et al. Poly(∊-caprolactone) Fiber: an Overview. J Engineer Fiber Fabr. 2014;9:155892501400900309.
  • Brostow W, Hagg Lobland HE. Materials: introduction and applications. Hoboken, NJ: John Wiley & Sons; 2017.
  • Malikmammadov E, Tanir TE, Kiziltay A, et al. PCL and PCL-based materials in biomedical applications. Ed. J Biomater Sci Polym. 2018;29:863–893.
  • Morais DD, Siqueira DD, Luna CB, et al. Grafting maleic anhydride onto polycaprolactone: influence of processing. Mater Res Exp. 2019;6:055315.
  • Goimil L, Santos-Rosales V, Delgado A, et al. scCO2-foamed silk fibroin aerogel/poly (ε-caprolactone) scaffolds containing dexamethasone for bone regeneration. J CO2 Utilizat. 2019;31:51–64.
  • Elomaa L, Teixeira S, Hakala R, et al. Preparation of poly(ε-caprolactone)-based tissue engineering scaffolds by stereolithography. Acta Biomater. 2011;7:3850–3856.
  • Xin H, Jiang X, Gu J, et al. Angiopep-conjugated poly (ethylene glycol)-co-poly (ε-caprolactone) nanoparticles as dual-targeting drug delivery system for brain glioma. Biomaterials. 2011;32:4293–4305.
  • Lawson C, Stanishevsky A, Sivan M, et al. Rapid fabrication of poly (ε‐caprolactone) nanofibers using needleless alternating current electrospinning. J Appl Polym Sci. 2016;133.DOI: 10.1002/app.43232
  • Azimi B, Nourpanah P, Rabiee M, et al. Application of response surface methodology to evaluate the effect of dryspinning parameters on poly(ε-caprolactone) fiber properties. J Appl Polym Sci. 2015;132. DOI: 10.1002/app.42113
  • Brostow W, Broza G, Datashvili T, et al. Poly(butyl terephthalate)/oxytetramethylene + oxidized carbon nanotubes hybrids: mechanical and tribological behavior, J. Mater Res. 2012;27:1815.
  • Spitalsky Z, Tasis D, Papagelis K, et al. Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci. 2010;35:357–401.
  • Giraldo LF, Brostow W, Devaux E, et al. Scratch and wear resistance of Polyamide 6 reinforced with multiwall carbon nanotubes. J Nanosci Nanotech. 2008;8:3176–3183.
  • Giraldo LF, Lopez BL, Brostow W. Effects of the type of carbon nanotubes on tribological properties of Polyamide 6. Polymer Eng Sci. 2009;49:896–902.
  • Zhou B, Tong ZZ, Huang J, et al. Synthesis and thermal behavior of poly (ε-caprolactone) grafted on multiwalled carbon nanotubes with high grafting degrees. Mater Chem Phys. 2013;137:1053–1061.
  • Wu TM, Chen EC. Crystallization behavior of poly (ε‐caprolactone)/multiwalled carbon nanotube composites. J Polym Sci B Polym Phys. 2006;44:598–606.
  • Wu D, Wu L, Sun Y, et al. Rheological properties and crystallization behavior of multi‐walled carbon nanotube/poly(εcaprolactone) composites. J Polym Sci B Polym Phys. 2007;45:3137–3147.
  • Zhou B, Xu JT, Fan ZQ. Probe the nucleation mechanism of poly(ε-caprolactone)s grafted on multi-walled carbon nanotubes under structural confinement. Compos Sci Technol. 2016;132:24–30.
  • Du AK, Yang KL, Zhao TH, et al. Poly(sodium 4-styrenesulfonate) wrapped carbon nanotube with low percolation threshold in poly(ε-caprolactone) nanocomposites. Polym Test. 2016;51:40–48.
  • Yang ZX, Liu X, Shao Y, et al. A facile fabrication of PCL/OBC/MWCNTs nanocomposite with selective dispersion of MWCNTs to access electrically responsive shape memory effect. Polym Compos. 2018;40:E1353–E1363.
  • Xie MM, Wang BB, Zhang P. The effect of crystallization behavior on high conductivity, enhanced mechanism and thermal stability of poly(ε-caprolactone)/multi-walled carbon nanotube composites. J Dispers Sci Technol. 2018;40:94–102.
  • Geim AK, Novoselov KS. The Rise of Graphene. Nat Mater. 2007;6:183–191.
  • Zhang H, Bao W, Deng Z, et al. Next-generation composite coating system: nanocoating. Front Mater. 2019;6:72.
  • Acik M, Chabal YJ. A review on thermal exfoliation of graphene oxide. J Mater Sci Res. 2013;2:101.
  • Smith AT, LaChance AM, Zeng S, et al. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater Sci. 2019;1:31–47.
  • Chee WK, Lim HN, Huang NM, et al. Nanocomposites of graphene/polymers: a review. Rsc Adv. 2015;5:68014–68051.
  • Saravanan N, Rajasekar R, Mahalakshmi S, et al. Graphene and modified graphene-based polymer nanocomposites–a review. J Reinforc Plast Compos. 2014;33:1158–1170.
  • Choi W, Lahiri I, Seelaboyina R, et al. Synthesis of graphene and its applications: a review. Critic Rev Sol Stat Mater Sci. 2010;35:52–71.
  • Zhang J, Qiu Z. Morphology, crystallization behavior, and dynamic mechanical properties of biodegradable poly(ε-caprolactone)/thermally reduced graphene nanocomposites. Indus Eng Chem Res. 2011;50:13885–13891.
  • Wang B, Li Y, Weng G, et al. Reduced graphene oxide enhances the crystallization and orientation of poly (ε-caprolactone). Compos, Sci Technol. 2014;96:63–70.
  • Ramazani S, Karimi M. Aligned poly(ε-caprolactone)/graphene oxide and reduced graphene oxide nanocomposite nanofibers: morphological, mechanical and structural properties. Mater Sci Engineer C. 2015;56:325–334.
  • Shi YF, Tian Z, Zhang Y, et al. Functionalized halloysite nanotube-based carrier for intracellular delivery of antisense oligonucleotides. Nanoscale Res Lett. 2011;6:608.
  • Du M, Guo B, Jia D. Newly emerging applications of halloysite nanotubes: a review. Polym Int. 2010;59:574–582.
  • Lecouvet B, Gutierrez JG, Sclavons M, et al. Structure-property relationships in polyamide 12/halloysite nanotube nanocomposites. Polym Degrad Stab. 2011;96:226–235.
  • Rooj S, Das A, Thakur V, et al. Preparation and properties of natural nanocomposites based on natural rubber and naturally occurring halloysite nanotubes. Mater Des. 2010;31:2151–2156.
  • Lee KS, Chang YW. Thermal, mechanical, and rheological properties of poly (ε‐Caprolactone)/halloysite nanotube nanocomposites. J Appl Polym Sci. 2013;128:2807–2816.
  • Terzopoulou Z, Papageorgiou DG, Papageorgiou GZ. D.N. Bikiaris Effect of surface functionalization of halloysite nanotubes on synthesis and thermal properties of poly(ε-caprolactone). J Mater Sci. 2018;53:6519–6541.
  • Li Y, Han C, Zhang X, et al. Rheology, mechanical properties, and biodegradation of poly (εcaprolactone)/silica nanocomposites. Polym Compos. 2013;34:1620–1628.
  • Kim J, Kwak S, Hong SM. Nonisothermal crystallization behaviors of nanocomposites prepared by in situ polymerization of high-density polyethylene on multiwalled carbon nanotubes. Macromolecules. 2010;43:10545–10553.
  • Zou H, Wu S, Shen J. Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev. 2008;108:3893–3957.
  • Vikas M, ed. In-situ synthesis of polymer nanocomposites. In: in-situ synthesis of polymer nanocomposites. Weinheim: Wiley; 2011. p. 1–25.
  • Gaharwar AK, Cross LM, Peak CW, et al. 2D nanoclay for biomedical applications: regenerative medicine, therapeutic delivery, and additive manufacturing. Adv Mater. 2019;31:1900332.
  • Penaloza DP Jr. Modified clay for the synthesis of clay-based nanocomposites. Epitoanyag-J Silicat Bas Compos Mater. 2019;71:5–11.
  • Bhattacharya M. Polymer nanocomposites-a comparison between carbon nanotubes, graphene, and clay as nanofillers. Materials. 2016;9:262.
  • Homminga D, Goderis B, Dolbnya I, et al. Crystallization behavior of polymer/montmorillonite nanocomposites. Part II. Intercalated poly(ε-caprolactone)/montmorillonite nanocomposites. Polymer. 2006;47:1620–1629.
  • Zheng X, Wilkie CA. Nanocomposites based on poly(ϵ-caprolactone)(PCL)/clay hybrid: polystyrene, high impact polystyrene, ABS, polypropylene and polyethylene. Polym Degrad Stab. 2003;82:441–450.
  • Cordes DB, Lickiss PD, Rataboul F. Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev. 2010;110:2081–2173.
  • Tanaka K, Chujo Y. Advanced functional materials based on polyhedral oligomeric silsesquioxane (POSS). J Mater Chem. 2012;22:1733–1746.
  • Zhang W, Müller AH. Architecture, self-assembly and properties of well-defined hybrid polymers based on polyhedral oligomeric silsequioxane (POSS). Prog Polym Sci. 2013;38:1121–1162.
  • Pan H, Yu J, Qiu Z. Crystallization and morphology studies of biodegradable poly (ϵ‐caprolactone)/polyhedral oligomeric silsesquioxanes nanocomposites. Polym Eng Sci. 2011;51:2159–2165.
  • Lee KS, Chang YW. Thermal and mechanical properties of poly (ε‐caprolactone)/polyhedral oligomeric silsesquioxane nanocomposites. Polym Int. 2013;62:64–70.
  • Tirkey MM, Gupta N. Electromagnetic absorber design challenges. IEEE Electromagnet Compatibil Mag. 2019;8:59–65.
  • Cui CH, Yan DX, Pang H, et al. Formation of a segregated electrically conductive network structure in a low-melt-viscosity polymer for highly efficient electromagnetic interference shielding. ACS Sustain Chem Eng. 2016;4:4137–4145.
  • Al-Saleh MH. Influence of conductive network structure on the EMI shielding and electrical percolation of carbon nanotube/polymer nanocomposites. Syn Met. 2015;205:78–84.
  • Thomassin JM, Lou X, Pagnoulle C, et al. Multiwalled carbon nanotube/poly (ε-caprolactone) nanocomposites with exceptional electromagnetic interference shielding properties. J Phys Chem C. 2007;111:11186–11192.
  • Zhang K, Yu HO, Shi YD, et al. Morphological regulation improved electrical conductivity and electromagnetic interference shielding in poly(L-lactide)/poly(ε-caprolactone)/carbon nanotube nanocomposites via constructing stereocomplex crystallites. J Mater Chem C. 2017;5:2807–2817.
  • Hager MD, Bode S, Weber C, et al. Shape memory polymers: past, present and future developments. Prog Polym Sci. 2015;49:3–33.
  • Navarro-Baena I, Sessini V, Dominici F, et al. Design of biodegradable blends based on PLA and PCL: from morphological, thermal and mechanical studies to shape memory behavior. Polym Degrad Stab. 2016;132:97–108.
  • Yarali E, Baniassadi M, Baghani M. Numerical homogenization of coiled carbon nanotube reinforced shape memory polymer nanocomposites. Smart Mater Struct. 2019;28:035026.
  • Xiao Y, Zhou S, Wang L, et al. Electro-active shape memory properties of poly (ε-caprolactone)/functionalized multiwalled carbon nanotube nanocomposite. ACS Appl Mater Interfaces. 2010;2:3506–3514.
  • Defize T, Riva R, Raquez JM, et al. Thermoreversibly crosslinked Poly (ε‐caprolactone) as recyclable shape‐memory polymer network. Macromolecul Rap Communicat. 2011;32:1264–1269.
  • Cai Y, Jiang JS, Zheng B, et al. Synthesis and properties of magnetic sensitive shape memory Fe3O4/poly (ε‐caprolactone)‐polyurethane nanocomposites. J Appl Polym Sci. 2013;127:49–56.
  • Kumar B, Castro M, Feller JF. Poly (lactic acid)–multi-wall carbon nanotube conductive biopolymer nanocomposite vapour sensors. Sens Actuat B: Chem. 2012;161:621–628.
  • Villmow T, Pegel S, Pötschke P, et al. Polymer/carbon nanotube composites for liquid sensing: model for electrical response characteristics. Polymer. 2011;52:2276–2285.
  • Villmow T, Kretzschmar B, Pötschke P. Influence of screw configuration, residence time, and specific mechanical energy in twin-screw extrusion of polycaprolactone/carbon nanotube composites. Compos Sci Technol. 2010;70:2045–2055.
  • Liu H, Huang W, Yang X, et al. Organic vapor sensing behaviors of conductive thermoplastic polyurethane-graphene nanocomposites. J Mater Chem C. 2016;4:4459–4469.
  • Hu N, Karube Y, Arai M, et al. Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor. Carbon. 2010;48:680–687.
  • Pham GT, Park YB, Liang Z, et al. Processing and modelling of conductive thermoplastic/carbon nanotube films for strain sensing. Compos B. 2008;39:209–216.
  • Sahoo NG, Rana S, Cho JW, et al. Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci. 2010;35:837–867.
  • Castro M, Lu J, Bruzaud S, et al. Carbon nanotubes/poly (ε-caprolactone) composite vapour sensors. Carbon. 2009;47:1930–1942.
  • Pötschke P, Kobashi K, Villmow T, et al. Liquid sensing properties of melt processed polypropylene/poly(ε-caprolactone) blends containing multiwalled carbon nanotubes. Compos Sci Technol. 2011;71:1451–1460.
  • Khademhosseini A, Vacanti JP, Langer R. Prog Tissue Eng Sci Am. Progress in tissue engineering. 2009;300:64–71.
  • Gross BC, Erkal JL, Lockwood SY, et al. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. 2014.
  • Wang P, Gong P, Lin Y, et al. Nanofibrous electrospun barrier membrane promotes osteogenic differentiation of human mesenchymal stem cells. J Bioact Compat Polym. 2011;26:607–618.
  • Gentile P, Chiono V, Carmagnola I, et al. An overview of poly (lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Molecul Sci. 2014;15:3640–3659.
  • Mohammadi S, Shafiei SS, Asadi-Eydivand M, et al. Graphene oxide-enriched poly (ε-caprolactone) electrospun nanocomposite scaffold for bone tissue engineering applications. J Bioact Compatib Polym. 2017;32:325–342.
  • Alig I, Pötschke P, Lellinger D, et al. Establishment, morphology and properties of carbon nanotube networks in polymer melts. Polymer. 2012;53:4–28.
  • Huang L, Vasanthan N, Tonelli AE. Polymer‐polymer composites fabricated by the in situ release and coalescence of polymer chains from their inclusion compounds with urea into a carrier polymer phase. J Appl Polym Sci. 1997;64:281–287.
  • Goffin AL, Raquez JM, Duquesne E, et al. From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites. Biomacromolecules. 2011;12:2456–2465.
  • Wu CS. In situ polymerization of titanium isopropoxide in polycaprolactone: properties and characterization of the hybrid nanocomposites. J Appl Polym Sci. 2004;92:1749–1757.
  • Harrane A, Belbachir M. Synthesis of biodegradable polycaprolactone/montmorillonite nanocomposites by direct in‐situ polymerization catalysed by exchanged clay. In: Macromolecular symposia. Vol. 247. Weinheim: WILEY‐VCH Verlag; 2007 Feb. p. 379–384.
  • Thomassin JM, Pagnoulle C, Bednarz L, et al. Foams of polycaprolactone/MWNT nanocomposites for efficient EMI reduction. J Mater Chem. 2008;18:792–796.
  • Zhang HB, Yan Q, Zheng WG, et al. Tough graphene-polymer microcellular foams for electromagnetic interference shielding. ACS Appl Mater Interfaces. 2011;3:918–924.
  • Xie L, Zhu Y. Tune the phase morphology to design conductive polymer composites: A review. Polym Compos. 2018;39:2985–2996.
  • Okuzaki H, Kuwabara T, Funasaka K, et al. Humidity‐sensitive polypyrrole films for electro‐active polymer actuators. Adv Funct Mater. 2013;23:4400–4407.
  • Li Y, Chen H, Liu D, et al. pH-responsive shape memory poly (ethylene glycol)-poly(ε-caprolactone)-based polyurethane/cellulose nanocrystals nanocomposite. ACS Appl Mater Interfaces. 2015;7:12988–12999.
  • Pilate F, Toncheva A, Dubois P, et al. Shape-memory polymers for multiple applications in the materials world. Eur Polym J. 2016;80:268–294.
  • Oh WK, Kwon OS, Jang J. Conducting polymer nanomaterials for biomedical applications: cellular interfacing and biosensing. Polym Rev. 2013;53:407–442.
  • Krucińska I, Surma B, Chrzanowski M, et al. Application of melt‐blown technology for the manufacture of temperature‐sensitive nonwoven fabrics composed of polymer blends PP/PCL loaded with multiwall carbon nanotubes. J Appl Polym Sci. 2013;127:869–878.
  • Boutry CM, Sun W, Strunz T, et al. Development and characterization of biodegradable conductive polymers for the next generation of RF bio-resonators. In 2010 IEEE International Frequency Control Symposium; 2010. p. 258–261.
  • Gautam S, Dinda AK, Mishra NC. Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method. Mater Sci Eng C. 2013;33:1228–1235.
  • Williamson MR, Black R, Kielty C. PCL-PU composite vascular scaffold production for vascular tissue engineering: attachment, proliferation and bioactivity of human vascular endothelial cells. Biomaterials. 2006;27:3608–3616.
  • Dash TK, Konkimalla VB. Poly-є-caprolactone based formulations for drug delivery and tissue engineering: A review. J Controll Releas. 2012;158:15–33.
  • Ge H, Hu Y, Jiang X, et al. Preparation, characterization, and drug release behaviors of drug nimodipine‐loaded poly (ε‐caprolactone)‐poly(ethylene oxide)‐poly (ε‐caprolactone) amphiphilic triblock copolymer micelles. J Pharmaceut Sci. 2002;91:1463–1473.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.