107
Views
1
CrossRef citations to date
0
Altmetric
Review

Holistic analysis of nanocomposites of carbon nanotube with polypropylene

ORCID Icon
Pages 186-197 | Received 11 Apr 2020, Accepted 04 May 2020, Published online: 15 May 2020

References

  • Zhang JW, Chen X, Belouadah R, et al. Dynamic surface potential decay tendency of cellular polypropylene after temperature control corona process. Mater Res Innovat. 2015;19:S1–S305.
  • AnisSofiah MK, Lin OH, Akil HM, et al. Effect of compatibiliser on the accelerated weathering performance of polypropylene–silica nanocomposites. Mater Res Innovat. 2014;18:S6–S433.
  • Cao D, He HY. Eco-friendly synthesis and characterisations of single-wall carbon nanotubes/Ag nanoparticle heterostructures. Mater Res Innovat. 2020;1–7.
  • Selvaraj V, ThamilMagal R, Prasanna D. Development of platinum and platinum-tin deposited nitrogen doped novel copolymer-carbon nanotubes electrocatalyst for alcohol oxidation. Mater Res Innovat. 2017;21:222–231.
  • Lu K, Grossiord N, Koning CE, et al. Carbon nanotube/isotactic polypropylene composites prepared by latex technology: morphology analysis of CNT-induced nucleation. Macromolecules. 2008;41:8081–8085.
  • Zhao J, Wang G, Wang C, et al. Ultra-lightweight, super thermal-insulation and strong PP/CNT microcellular foams. Compos Sci Technol. 2020;191:108084.
  • Zhou S, Hrymak AN, Kamal MR. Electrical, thermal, and mechanical properties of polypropylene/multiwalled carbon nanotube micromoldings. Polym Compos. 2019;41:1507–1520.
  • Ju J, Kuang T, Ke X, et al. Lightweight multifunctional polypropylene/carbon nanotubes/carbon black nanocomposite foams with segregated structure, ultralow percolation threshold and enhanced electromagnetic interference shielding performance. Compos Sci Technol. 2020:108116.
  • Grundler M, Derieth T, Beckhaus P, et al. CarbonNanoTubes (CNT) in bipolar plates for PEM fuel cell applications. 18th World Hydrogen Energy Conference; 2010 16–21.
  • Lee E, Kim HJ, Park Y, et al. Direct patterning of a carbon nanotube thin layer on a stretchable substrate. Micromachines. 2019;10:530.
  • Fathy NA, Amr A, Abdelmoaty AS, et al. A. Retarding the flammability of polypropylene based on the synergistic effect of montmorillonite and carbon nanotubes. Egyptian J Chem. 2019;62:1995–2001.
  • Wei T, Hauke F, Andreas H. Covalent inter-synthetic-carbon-allotrope hybrids. Acc Chem Res. 2019;52:2037–2045.
  • Chatterjee A, Deopura BL. Carbon nanotubes and nanofibre: an overview. Fiber Polym. 2002;3:134–139.
  • Bonduel D, Bredeau S, Alexandre M, et al. Supported metallocene catalysis as an efficient tool for the preparation of polyethylene/carbon nanotube nanocomposites: effect of the catalytic system on the coating morphology. J Mater Chem. 2007;17:2359–2366.
  • Martinez A, Yamashita S. Carbon nanotube-based photonic devices: applications in nonlinear optics. Carb Nanotube Appl Electr Dev. 2011;367–386.
  • Rahmandoust M, Ayatollahi MR. Carbon Nanotubes. In: Characterization of carbon nanotube based composites under consideration of defects. Cham: Springer; 2016. p. 5–63.
  • Zhang M, Fang S, Zakhidov AA, et al. Strong, transparent, multifunctional, carbon nanotube sheets. Sciencex. 2007;309:1215–1219.
  • Moghadam AD, Omrani E, Menezes PL, et al. Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene–a review. Compos B: Eng. 2015;77:402–420.
  • Javey A, Guo J, Wang Q, et al. Ballistic carbon nanotube field-effect transistors. Nature. 2003;424:654–657.
  • Harris PJ. Carbon nanotube composites. Int Mater Rev. 2004;49:31–43.
  • Balow MJ. Handbook of Polypropylene and Polypropylene Composites. Karian HG, editor. New York (USA): CRC Press; 2003.
  • Kadomae Y, Maruyama Y, Sugimoto M, et al. Relation between tacticity and fiber diameter in melt-electrospinning of polypropylene. Fibers Polym. 2009;10:275–279.
  • Baniasadi H, SA AR, Nikkhah SJ. Investigation of in situ prepared polypropylene/clay nanocomposites properties and comparing to melt blending method. Mater Des. 2010;31:76–84.
  • Himma NF, Wardani AK, Wenten IG. Preparation of superhydrophobic polypropylene membrane using dip-coating method: the effects of solution and process parameters. Polym Plast Technol Eng. 2017;56:184–194.
  • Chen L, Wang Y, Zhu X, et al. Influence of the conformational order of glassy isotactic polypropylene on its crystallization and melting behaviour. Polym Int. 2004;53:131–135.
  • Kalaitzidou K, Fukushima H, Drzal LT. Mechanical properties and morphological characterization of exfoliated graphite–polypropylene nanocomposites. Compos A: Appl Sci Manufact. 2007;38:1675–1682.
  • Thomassin J-M, Huynen I, Jerome R, et al. Functionalized polypropylenes as efficient dispersing agents for carbon nanotubes in a polypropylene matrix; application to electromagnetic interference (EMI) absorber materials. Polymer. 2010;51:115–121.
  • Bikiaris D. Microstructure and properties of polypropylene/carbon nanotube nanocomposites. Materials. 2010;3:2884–2946.
  • Prashantha K, Soulestin J, Lacrampe MF, et al. Multi-walled carbon nanotube filled polypropylene nanocomposites based on masterbatch route: improvement of dispersion and mechanical properties through PP-g-MA addition. Exp Polym Lett. 2008;2:735–745.
  • Wu D, Sun Y, Zhang M. Kinetics study on melt compounding of carbon nanotube/polypropylene nanocomposites. J Polym Sci B Polym Phys. 2009;47:608–618.
  • Abdou JP, Reynolds KJ, Pfau MR, et al. Interfacial crystallization of isotactic polypropylene surrounding macroscopic carbon nanotube and graphene fibers. Polymer. 2016;91:136–145.
  • Yang L, Liu F, Xia H, et al. Improving the electrical conductivity of a carbon nanotube/polypropylene composite by vibration during injection-moulding. Carbon. 2011;49:3274–3283.
  • Wu HY, Jia LC, Yan DX, et al. Simultaneously improved electromagnetic interference shielding and mechanical performance of segregated carbon nanotube/polypropylene composite via solid phase molding. Compos Sci Technol. 2018;156:87–94.
  • Zhao P, Wang K, Yang H, et al. Excellent tensile ductility in highly oriented injection-molded bars of polypropylene/carbon nanotubes composites. Polymer. 2007;19:5688–5695.
  • Cantor KM, Watts P Plastics processing. In: Applied plastics engineering handbook. William Andrew Publishing; 2011. p. 195–203.
  • Chu CC, White KL, Liu P, et al. Electrical conductivity and thermal stability of polypropylene containing well-dispersed multi-walled carbon nanotubes disentangled with exfoliated nanoplatelets. Carbon. 2012;50:4711–4721.
  • Prashantha K, Soulestin J, Lacrampe MF, et al. Masterbatch-based multi-walled carbon nanotube filled polypropylene nanocomposites: assessment of rheological and mechanical properties. Compos Sci Technol. 2009;69:1756–1763.
  • Abdel-Goad M, Pötschke P, Zhou D, et al. Preparation and rheological characterization of polymer nanocomposites based on expanded graphite. J Macromol Sci A. 2007;44:591–598.
  • Bao SP, Tjong SS. Mechanical behaviours of polypropylene/carbon nanotubes nanocomposites: the effects of loading rates and temperature. Mater Sci Eng A. 2008;485:508–516.
  • Ma PC, Siddiqui NA, Marom G, et al. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos A: Appl Sci Manufact. 2010;41:1345–1367.
  • Chou TW, Gao L, Thostenson ET, et al. An assessment of the science and technology of carbon nanotube-based fibers and composites. Compos Sci Technol. 2010;70:1–19.
  • Jose MV, Dean D, Tyner J, et al. Polypropylene/carbon nanotube nanocomposites fibers: process-morphology-property relationships. J Appl Polym Sci. 2007;103:3844–3850.
  • Khan SU, Li CY, Siddiqui NA, et al. Vibration damping characteristics of carbon fiber-reinforced composites containing multi-walled carbon nanotubes. Compos Sci Technol. 2011;71:1486–1494.
  • Choudhary,A V. Gupta. Polymer/carbon nanotube nanocomposites. In: Carbon nanotubes-polymer nanocomposites. 2011. p. 65–90.
  • Lee GW, Jagannathan S, Chae HG, et al. Kumar. Carbon nanotube dispersion and exfoliation in polypropylene and structure and properties of the resulting composites. Polymer. 2008;49:1831–1840.
  • Bhuiyan MKH, Rahman MM, Mina MF, et al. Crystalline morphology and properties of multi-walled carbon nanotube filled isotactic polypropylene nanocomposites: influence of filler size and loading. Compos A: Appl Sci Manufact. 2013;52:70–79.
  • Ganß M, Satapathy BK, Thunga M, et al. Structural interpretations of deformation and fracture behavior of polypropylene/multi-walled carbon nanotube composites. ActaMaterialia. 2008;56:2247–2261.
  • Razavi-Nouri M, Ghorbanzadeh-Ahangari M, Fereidoon A, et al. Effect of carbon nanotubes content on crystallization kinetics and morphology of polypropylene. Polym Test. 2009;28:46–52.
  • Arif PM, Sarathchandran C, Narayanan A, et al. Thomas. Multiwalled carbon nanotube promotes crystallisation while preserving co-continuous phase morphology of polycarbonate/polypropylene blend. Polym Test. 2017;64:1–11.
  • Chandan A, Hattenberger M, El-Kharouf A, et al. High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)–A review. J Power Sour. 2013;231:264–278.
  • Yuan XZ, Li H, Zhang S, et al. A review of polymer electrolyte membrane fuel cell durability test protocols. J Power Sour. 2011;196:9107–9116.
  • Ji M, Wei Z. A review of water management in polymer electrolyte membrane fuel cells. Energies. 2009;2:1057–1106.
  • Antunes RA, De Oliveira MC, Ett G, et al. Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells: A review of the main challenges to improve electrical performance. J Power Sour. 2011;196:2945–2961.
  • Asri NF, Husaini T, Sulong AB, et al. Coating of stainless steel and titanium bipolar plates for anticorrosion in PEMFC: A review. Int J Hydrog Ener. 2017;42:9135–9148.
  • Liao SH, Yen CY, Weng CC, et al. Preparation and properties of carbon nanotube/polypropylene nanocomposite bipolar plates for polymer electrolyte membrane fuel cells. J Power Sour. 2008;185:1225–1232.
  • Liao SH, Weng CC, Yen CY, et al. Preparation and properties of functionalized multiwalled carbon nanotubes/polypropylene nanocomposite bipolar plates for polymer electrolyte membrane fuel cells. J Power Sour. 2010;195:263–270.
  • Cunningham BD, Huang,D J, Baird G. Development of bipolar plates for fuel cells from graphite filled wet-lay material and a thermoplastic laminate skin layer. J Power Sour. 2007;165:764–773.
  • Taherian R. A review of composite and metallic bipolar plates in proton exchange membrane fuel cell: materials, fabrication, and material selection. J Power Sour. 2014;265:370–390.
  • Karimi S, Fraser N, Roberts B, et al. A review of metallic bipolar plates for proton exchange membrane fuel cells: materials and fabrication methods. Adv Mater Sci Eng. 2012;2012.
  • Pang H, Xu L, Yan D-X, et al. Conductive polymer composites with segregated structures. Progress in Polymer Science. 2014;39(11):1908–1933.
  • Yan DX, Pang H, Li B, et al. Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv Funct Mater. 2015;25:559–566.
  • Zheng Y, Zheng Y, Yang S, et al. Esterification synthesis of ethyl oleate catalyzed by Brønsted acid–surfactant-combined ionic liquid, Green Chem. Lett Rev. 2017;10:202–209.
  • Yang W, Wang XL, Li J, et al. Polyoxymethylene/ethylene butylacrylate copolymer/ethylene-methyl acrylate-glycidyl methacrylate ternary blends. Polym Eng Sci. 2018;58:1127–1134.
  • Lee T-W, Lee S-E, Jeong YG. Carbon nanotube/cellulose papers with high performance in electric heating and electromagnetic interference shielding. Compos Sci Technol. 2016;131:77–87.
  • Danlée Y, Bailly C, Huynen I. Thin and flexible multilayer polymer composite structures for effective control of microwave electromagnetic absorption. Compos Sci Technol. 2014;100:182–188.
  • Eun SW, Choi WH, Jang HK, et al. Effect of delamination on the electromagnetic wave absorbing performance of radar absorbing structures. Compos Sci Technol. 2015;116:18–25.
  • Li Y, Huang X, Zeng L, et al. A review of the electrical and mechanical properties of carbon nanofiller-reinforced polymer composites. J Mater Sci. 2019;54:1036–1076.
  • Jiang D, Murugadoss V, Wang Y, et al. Electromagnetic interference shielding polymers and nanocomposites-a review. Polym Rev. 2019;59:280–337.
  • Lin ZI, Lou CW, Pan YJ, et al. Conductive fabrics made of polypropylene/multi-walled carbon nanotube coated polyester yarns: mechanical properties and electromagnetic interference shielding effectiveness. Compos Sci Technol. 2017;141:74–82.
  • Sahoo NG, Rana S, Cho JW, et al. Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci. 2010;35(7):837–867.
  • Pang H, Bao Y, Xu L, et al. Double-segregated carbon nanotube–polymer conductive composites as candidates for liquid sensing materials. J Mater Chem A. 2013;1:4177–4181.
  • Bhuiyan MA, Pucha RV, Worthy J, et al. Defining the lower and upper limit of the effective modulus of CNT/polypropylene composites through integration of modeling and experiments. Compos Struct. 2013;95:80–87.
  • Ezat GS, Kelly AL, Mitchell SC, et al. Effect of maleic anhydride grafted polypropylene compatibilizer on the morphology and properties of polypropylene/multiwalled carbon nanotube composite. Polym Compos. 2012;33:1376–1386.
  • Lillemose M, Spieser M, Christiansen NO, et al. Intrinsically conductive polymer thin film piezoresistors. Microelectron Eng. 2008;85:969–971.
  • Pham GT, Park YB, Liang Z, et al. Processing and modeling of conductive thermoplastic/carbon nanotube films for strain sensing. Compos B Eng. 2008;39:209–216.
  • Li C, Thostenson ET, Chou TW. Sensors and actuators based on carbon nanotubes and their composites: A review. Compos Sci Technol. 2008;68:1227–1249.
  • Zetina-Hernández O, Duarte-Aranda S, May-Pat A, et al. Coupled electro-mechanical properties of multiwall carbon nanotube/polypropylene composites for strain sensing applications. J Mater Sci. 2013;48:7587–7593.
  • Rocha JG, Paleo AJ, van Hattumand FW, et al. Polypropylene-carbon nanofiber composites as strain-gauge sensor. IEEE Sens J. 2013;13:2603–2609.
  • Kang I, Khaleque MA, Yoo Y, et al. Preparation and properties of ethylene propylene diene rubber/multi walled carbon nanotube composites for strain sensitive materials. Compos A: Appl Sci Manufact. 2011;42:623–630.
  • Laoutid F, Bonnaud L, Alexandre M, et al. New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater Sci Engineer R: Rep. 2009;63:00–125.
  • Dasari A, Yu ZZ, Cai GP, et al. Recent developments in the fire retardancy of polymeric materials. Prog Polym Sci. 2013;38:1357–1387.
  • Kashiwagi T, Grulke E, Hilding J, et al. Thermal degradation and flammability properties of poly (propylene)/carbon nanotube composites. Macromolecul Rap Communicat. 2002;23:761–765.
  • Fu S, Song P, Yang H, et al. Effects of carbon nanotubes and its functionalization on the thermal and flammability properties of polypropylene/wood flour composites. J Mater Sci. 2010;45:3520–3528.
  • Yu H, Zhang Z, Wang Z, et al. Double functions of chlorinated carbon nanotubes in its combination with Ni2O3 for reducing flammability of polypropylene. J Phys Chem C. 2010;114:13226–13233.
  • Hapuarachchi TD, Peijs T, Bilotti E. Thermal degradation and flammability behavior of polypropylene/clay/carbon nanotube composite systems. Polym Adv Technol. 2013;24:331–338.
  • Kashiwagi T, Grulke E, Hilding J, et al. Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites. Polymer. 2004;45:4227–4239.
  • Garzón C, Palza H. Electrical behavior of polypropylene composites melt mixed with carbon-based particles: effect of the kind of particle and annealing process. Compos Sci Technol. 2014;99:117–123.
  • Tjong SC, Liang GD, Bao SP. Electrical behavior of polypropylene/multiwalled carbon nanotube nanocomposites with low percolation threshold. Scripta Mater. 2007;57:461–464.
  • Kazemi Y, Kakroodi AR, Wang S, et al. Conductive network formation and destruction in polypropylene/carbon nanotube composites via crystal control using supercritical carbon dioxide. Polymer. 2017;129:179–188.
  • Tian S, Dong B, Guo Y, et al. Injection-molded lightweight and high electrical conductivity composites with microcellular structure and hybrid fillers. Cell Polym. 2019;38:131–152.
  • Zhou S, Hrymak AN, Kamal MR, et al. Properties of microinjection‐molded polypropylene/graphite composites. Polym Eng Sci. 2019;59:1560–1569.
  • Wen X, Tian N, Gong J, et al. Effect of nanosized carbon black on thermal stability and flame retardancy of polypropylene/carbon nanotubes nanocomposites. Polym Adv Technol. 2013;24:971–977.
  • Kang CH, Yoon KH, Park YB, et al. Properties of polypropylene composites containing aluminum/multi-walled carbon nanotubes. Compos A: Appl Sci Manufact. 2010;41:919–926.
  • Shim YS, Park SJ. Influence of glycidyl methacrylate grafted multi-walled carbon nanotubes on viscoelastic behaviors of polypropylene nanocomposites. Carbon Lett. 2010;11:311–315.
  • Miquelard-Garnier G, Guinault A, Fromonteil D, et al. Dispersion of carbon nanotubes in polypropylene via multilayer coextrusion: influence on the mechanical properties. Polymer. 2013;54:4290–4297.
  • Huegun A, Fernández M, Muñoz ME, et al. Rheological properties and electrical conductivity of irradiated MWCNT/PP nanocomposites. Compos Sci Technol. 2012;72:1602–1607.
  • Hári J, Pukánszky B Nanocomposites: preparation, structure, and properties. In: Applied plastics engineering handbook. William Andrew Publishing; 2011. p. 109–142.
  • Lee TW, Jeong YG. Enhanced electrical conductivity, mechanical modulus, and thermal stability of immiscible polylactide/polypropylene blends by the selective localization of multi-walled carbon nanotubes. Compos Sci Technol. 2014;103:78–84.
  • Szeluga U, Kumanek B, Trzebicka B. Synergy in hybrid polymer/nanocarbon composites. A review. Compos A: Appl Sci Manufact. 2015;73:204–231.
  • Al-Saleh MH. Electrically conductive carbon nanotube/polypropylene nanocomposite with improved mechanical properties. Mater Des. 2015;85:76–81.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.