177
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Facile hydrothermal synthesis of mesoporous WO3 /KIT-6 nanocomposite depicting great humidity sensitive properties

, &
Pages 203-213 | Received 09 Mar 2021, Accepted 06 Jun 2021, Published online: 13 Jun 2021

References

  • Farahani H, Wagiran R, Hamidon MN. Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors. 2014;14(5):7881–7939.
  • Kulwicki BM Humidity sensors. J Am Ceram Soc. 1991;74(4):697–708. https://doi.org/https://doi.org/10.1111/j.1151-2916.1991.tb06911.x
  • Dou YQ, Zhai Y, Zeng F, et al. Encapsulation of polyaniline in 3-D interconnected mesopores of silica KIT-6. J Colloid Interface Sci. 2010;341(2):353–358.
  • Gomez D, Morgan SP, Hayes-Gill BR, et al. Polymeric optical fibre sensor coated by SiO2 nanoparticles for humidity sensing in the skin microenvironment. Sens Actuators B Chem. 2018;254:887–895.
  • Du G, Lim S, Pinault M, et al. Synthesis, characterization, and catalytic performance of highly dispersed vanadium grafted SBA-15 catalyst. J Catal. 2008;253(1):74–90. https://doi.org/https://doi.org/10.1016/j.jcat.2007.10.019
  • Tomer VK, Duhan S, Sharma AK, et al. One pot synthesis of mesoporous ZnO-SiO2 nanocomposite as high performance humidity sensor. Colloids Surf A Physicochem Eng Asp. 2015;483:121–128. https://doi.org/https://doi.org/10.1016/j.colsurfa.2015.07.046
  • Wei J, Sun Z, Luo W, et al. New insight into the synthesis of large-pore ordered mesoporous materials. J Am Chem Soc. 2017;139(5):1706–1713.
  • Qiu Y, Yang S. ZnO nanotetrapods: controlled vapor-phase synthesis and application for humidity sensing. Adv Funct Mater. 2007;17(8):1345–1352.
  • Huo Q, Margolese DI, Stucky GD. Surfactant control of phases in the synthesis of mesoporous silica-based materials. Chem Mater. 1996;8:1147–1160.
  • Poonia E, Duhan S, Kumar K, et al. One pot hydrothermal synthesis of ordered mesoporous SnO 2 /SBA-16 nanocomposites. J Porous Mater. 2019;26(2):553–560.
  • Tomer VK, Jangra S, Malik R, et al. Effect of in-situ loading of nano titania particles on structural ordering of mesoporous SBA-15 framework. Colloids Surf A Physicochem Eng Asp. 2015;466:160–165. https://doi.org/https://doi.org/10.1016/j.colsurfa.2014.11.025
  • Jangra S, Girotra P, Chhokar V, et al. In-vitro drug release kinetics studies of mesoporous SBA-15-azathioprine composite. J Porous Mater. 2016;23(3):679–688.
  • Nie X, Chen J, Li G, et al. Synthesis and characterization of TiO2 nanotube photoanode and its application in photoelectrocatalytic degradation of model environmental pharmaceuticals. J Chem Technol Biotechnol. 2013;88(8):1488–1497.
  • Poonia E, Dahiya MS, Tomer VK, et al. Humidity sensing behavior of tin-loaded 3-D cubic mesoporous silica. Physica E. 2018;101:284–293.
  • Dahiya MS, Khasa S, Agarwal A. Thermal characterization of novel magnesium oxyhalide bismo-borate glass doped with VO2+ ions. J Therm Anal Calorim. 2016;123(1):457–465.
  • Ballem MA, Córdoba JM, Odén M. Influence of synthesis temperature on morphology of SBA-16 mesoporous materials with a three-dimensional pore system. Microporous Mesoporous Mater. 2010;129(1–2):106–111.
  • Nasution TI, Nainggolan I, Dalimunthe D, et al. Humidity detection using chitosan film based sensor. In: IOP Conference Series: Materials Science and Engineering; 2018; Institute of Physics Publishing. p. 012080. DOI:https://doi.org/10.1088/1757-899X/309/1/012080.
  • Galarneau A, Ivanova II. Introduction to the themed issue in honor of Dr François Fajula: “an exciting journey in the creative world of ordered porous materials and their applications,”. New J Chem. 2016;40(5):3930–3932.
  • Rajalakshmi R, Maheswari R, Ramanathan A. Characterization and activity of novel tin incorporated ordered cubic mesoporous silicate, Sn-KIT-6. Mater Res Bull. 2016;75:224–229.
  • Nayak AK, Ghosh R, Santra S, et al. Hierarchical nanostructured WO3 –SnO2 for selective sensing of volatile organic compounds. Nanoscale. 2015;7(29):12460–12473.
  • Malik R, Tomer VK, Chaudhary V, et al. A low temperature, highly sensitive and fast response toluene gas sensor based on In(III)-SnO2 loaded cubic mesoporous graphitic carbon nitride. Sens Actuators B Chem. 2018;255:3564–3575.
  • Tu J, Li N, Lai X, et al. H 2 S-sensing properties of Pt-doped mesoporous indium oxide. Appl Surf Sci. 2010;256(16):5051–5055.
  • Malik R, Tomer VK, Chaudhary V, et al. An excellent humidity sensor based on In–SnO2 loaded mesoporous graphitic carbon nitride. J Mater Chem A. 2017;5(27):14134–14143.
  • Tomer VK, Duhan S, Adhyapak PV, et al. Mn-loaded mesoporous silica nanocomposite: a highly efficient humidity sensor. J Am Ceram Soc. 2015;98(3):741–747.
  • Shah P, Ramaswamy AV, Lazar K, et al. Direct hydrothermal synthesis of mesoporous Sn-SBA-15 materials under weak acidic conditions. Microporous Mesoporous Mater. 2007;100(1–3):210–226.
  • Poonia E, Kiran V, Sangwan J, et al. Enhanced sensing performance of relative humidity sensors based on Mn/KIT-6 hybrid nanocomposite. Sens Lett. 2019;17(3):213–218.
  • Malik R, Tomer VK, Rana PS, et al. Surfactant assisted hydrothermal synthesis of porous 3-D hierarchical SnO2 nanoflowers for photocatalytic degradation of Rose Bengal. Mater Lett. 2015;154:124–127.
  • Malik R, Rana PS, Tomer VK, et al. Nano gold supported on ordered mesoporous WO3/SBA-15 hybrid nanocomposite for oxidative decolorization of azo dye. Microporous Mesoporous Mater. 2016;225:245–254.
  • Liu Q, Li J, Zhao Z, et al. Synthesis, characterization, and catalytic performances of potassium-modified molybdenum-incorporated KIT-6 mesoporous silica catalysts for the selective oxidation of propane to acrolein. J Catal. 2016;344:38–52.
  • Hamid O, Chari MA, Van Nguyen C, et al. ZnO-loaded mesoporous silica (KIT-6) as an efficient solid catalyst for production of various substituted quinoxalines. Catal Commun. 2017;90:111–115.
  • Jo C, Kim K, Ryoo R Syntheses of high quality KIT-6 and SBA-15 mesoporous silicas using low-cost water glass, through rapid quenching of silicate structure in acidic solution. Microporous Mesoporous Mater. 2009;124(1–3):45–51. https://doi.org/https://doi.org/10.1016/j.micromeso.2009.04.037
  • Wang W, Qi R, Shan W, et al. Synthesis of KIT-6 type mesoporous silicas with tunable pore sizes, wall thickness and particle sizes via the partitioned cooperative self-assembly process. Microporous Mesoporous Mater. 2014;194:167–173.
  • Malik R, Tomer VK, Kienle L, et al. Ordered mesoporous Ag–ZnO@g‐CN nanohybrid as highly efficient bifunctional sensing material. Adv Mater Interfaces. 2020;7(19):2071357.
  • Tomer VK, Devi S, Malik R, et al. Fast response with high performance humidity sensing of Ag-SnO2/SBA-15 nanohybrid sensors. Microporous Mesoporous Mater. 2016;219:240–248.
  • Malik R, Tomer VK, Dankwort T, et al. Cubic mesoporous Pd–WO3 loaded graphitic carbon nitride (g-CN) nanohybrids: highly sensitive and temperature dependent VOC sensors. J Mater Chem A. 2018;6(23):10718–10730.
  • Tu J, Li N, Geng W, et al. Study on a type of mesoporous silica humidity sensing material. Sens Actuators B Chem. 2012;166–167:658–664.
  • Li L, Guo Y, Zhao C, et al. Multilayer-structured poly-vanadium Acid/polyaniline composite: synthesis and properties for humidity sensing. Macromol Res. 2018;26(7):592–601.
  • Geng W, Zhou L, Duan L, et al. Humidity sensing property of NaCl-added mesoporous silica synthesized by a facile way with low energy cost. Int J Appl Ceram Technol. 2015;12(1):169–175.
  • Song SH, Yang HH, Han CH, et al. Metal-oxide-semiconductor field effect transistor humidity sensor using surface conductance. Appl Phys Lett. 2012;100(10):101603.
  • Xia Y, Zhao H, Liu S, et al. The humidity-sensitive property of MCM-48 self-assembly fiber prepared via electrospinning. RSC Adv. 2014;4(6):2807–2812.
  • Geng W, Yuan Q, Jiang X, et al. Humidity sensing mechanism of mesoporous MgO/KCl-SiO 2 composites analyzed by complex impedance spectra and bode diagrams. Sens Actuators B Chem. 2012;174:513–520.
  • Zhou D, Pang L, Xie H, et al. Crystal structure and microwave dielectric properties of an ultralow-temperature-fired (AgBi)0.5WO4 ceramic. Eur J Inorg Chem. 2014;2(2):296–301.
  • Wang R, Zhang T, He Y, et al. Direct-current and alternating-current analysis of the humidity-sensing properties of nickel oxide doped polypyrrole encapsulated in mesoporous silica SBA-15. J Appl Polym Sci. 2010;115(6):3474–3480.
  • Wang R, Liu X, He Y, et al. The humidity-sensitive property of MgO-SBA-15 composites in one-pot synthesis. Sens Actuators B Chem. 2010;145(1):386–393. https://doi.org/https://doi.org/10.1016/j.snb.2009.12.025
  • Zhang T, Wang R, Geng W, et al. Study on humidity sensing properties based on composite materials of Li-doped mesoporous silica A-SBA-15. Sens Actuators B Chem. 2008;128(2):482–487.
  • Sundaram R Comparative study on micromorphology and humidity sensitive properties of thick film and disc humidity sensors based on semiconducting SnWO4-SnO2 composites. Sens Actuators B Chem. 2007;124(2):429–436. https://doi.org/https://doi.org/10.1016/j.snb.2007.01.005
  • Pandey NK, Tiwari K, Roy A, et al. Ag-loaded WO3 ceramic nanomaterials: characterization and moisture sensing studies. Int J Appl Ceram Technol. 2013;10(1):150–159.
  • Geng W, Wang R, Li X, et al. Humidity sensitive property of Li-doped mesoporous silica SBA-15. Sens Actuators B Chem. 2007;127(2):323–329. https://doi.org/https://doi.org/10.1016/j.snb.2007.04.021
  • Yuan Q, Li N, Geng W, et al. Humidity sensing properties of mesoporous iron oxide/silica composite prepared via hydrothermal process. Sens Actuators B Chem. 2011;160(1):334–340.
  • Su PG, Lu PH. Electrical and humidity-sensing properties of impedance-type humidity sensors that were made of ag microwires/ppy/sno2 ternary composites. Chemosensors. 2020;8(4):1–14.
  • Tomer VK, Adhyapak PV, Duhan S, et al. Humidity sensing properties of Ag-loaded mesoporous silica SBA-15 nanocomposites prepared via hydrothermal process. Microporous Mesoporous Mater. 2014;197:140–147.
  • Tomer VK, Duhan S. Highly sensitive and stable relative humidity sensors based on WO3 modified mesoporous silica. Appl Phys Lett. 2015;106(6):063105.
  • He X, Geng W, Zhang B, et al. Ultrahigh humidity sensitivity of NaCl-added 3D mesoporous silica KIT-6 and its sensing mechanism. RSC Adv. 2016;6(44):38391–38398.
  • Zhao H, Liu S, Wang R, et al. Humidity-sensing properties of LiCl-loaded 3D cubic mesoporous silica KIT-6 composites. Mater Lett. 2015;147:54–57.
  • Jakhar S, Duhan S, Nain S. Novel one step hydrothermal synthesis of cubic Ia3d large pore 3D mesoporous In2O3/KIT-6 hybrid nanocomposite with humidity sensing applications. J Porous Mater. 2020;27(5):1253–1263.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.