190
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Electrochemical investigation of allopurinol polymerised carbon paste electrode interface for epinephrine and folic acid sensing in pharmaceutical samples

, , , &
Pages 295-302 | Received 24 Jun 2021, Accepted 29 Aug 2021, Published online: 13 Sep 2021

References

  • Khudaish EA, Al-Hinaai M, Al-Harthy S, et al. Electrochemical oxidation of chlorpheniramine at polytyramine film doped with ruthenium (II) complex: measurement, kinetic and thermodynamic studies. Electrochim.Acta. 2014;135:319–326.
  • Niranjana E, Kumara Swamy BE, Raghavendra Naik R, et al. Electrochemical investigations of potassium ferricyanide and dopamine by sodium dodecyl sulphate modified carbon paste electrode: a cyclic voltammetric study. J.Electroanal.Chem. 2009;631(1–2):1–9.
  • Teradale AB, Lamani SD, Kumara Swamy BE, et al. Electrochemical investigation of catechol at poly(niacinamide) modified carbon paste electrode: a voltammetric study. Adv Phys Chem. 2016;2016:1–8. Article ID 8092860, 8 pages.
  • Ganesh PS, Kumara Swamy BE. Voltammetric resolution of catechol and hydroquinone at eosin Y film modified carbon paste electrode. J Mol Liq. 2016;220:208–215.
  • Lamani SD, Teradale AB, Unki SN, et al. Electrochemical oxidation and determination of methocarbamol at multi walled carbon nanotubes modified glassy carbon electrode. Anal Bioanal Electrochem. 2016;8:304–317.
  • Manjunatha JG, Deraman M, Basri NH. Electrocatalytic detection of dopamine and uric acid at poly (basic blue b) modified carbon nanotube paste electrode. Asian J Pharmaceut Clin Res. 2015;8:48–53.
  • Manjunatha JG, Swamy BEK, Shreenivas MT, et al. Selective determination of dopamine in the presence of ascorbic acid using a poly (nicotinic acid) modified carbon paste electrode. Anal Bioanal Electrochem. 2012;4:225–237.
  • Manjunatha JG. A novel voltammetric method for the enhanced detection of the food additive tartrazine using an electrochemical sensor. Heliyon. 2018;4(11):e00986.
  • Manjunathaa JG, Deraman M, Basri NH, et al. Selective detection of dopamine in the presence of uric acid using polymerized phthalo blue film modified carbon paste electrode. Adv Mater Res. 2014;895:447–451.
  • Charithra MM, Manjunatha JG. Enhanced voltammetric detection of paracetamol by using carbon nanotube modified electrode as an electrochemical sensor. J Electrochem Sci Eng. 2020;10(1):29–40.
  • Pushpanjali PA, Manjunatha JG, Shreenivas MT. The electrochemical resolution of ciprofloxacin, riboflavin and estriol using anionic surfactant and polymer-modified carbon paste electrode. Chem Sel. 2019;4:13427–13433.
  • Hareesha N, Manjunatha JG, Raril C, et al. Design of novel surfactant modified carbon nanotube paste electrochemical sensor for the sensitive investigation of tyrosine as a pharmaceutical drug. Adv Pharm Bull. 2019;9(1):132–137.
  • Ganesh PS, Shimoga G, Lee SH, et al. Interference free simultaneous detection of dihydroxy benzene isomers at cost-effective and reliable celestine blue modified glassy carbon electrode. Chem Sel. 2021;6(9):2379–2386.
  • Ganesh PS, Kim SY, Kaya S, et al. Quantum chemical studies and electrochemical investigations of polymerized brilliant blue-modified carbon paste electrode for in vitro sensing of pharmaceutical samples. Chemosensors. 2021;9(6):135.
  • Rajaji U, Ganesh PS, Chen SM, et al. Deep eutectic solvents synthesis of perovskite type cerium aluminate embedded carbon nitride catalyst: high-sensitive amperometric platform for sensing of glucose in biological fluids. J Ind Eng Chem. 2021;102:312–320.
  • Teradale AB, Lamani SD, Ganesh PS, et al. Niacin film coated carbon paste electrode sensor for the determination of epinephrine in presence of uric acid: a cyclic voltammetric study. Anal Chem Lett. 2017;7(6):748–764.
  • Wang L, Bai J, Huang P, et al. Electrochemical behavior and determination of epinephrine at a penicillamine self-assembled gold electrode. Int. J. Electrochem. Sci. 2006;1(3):238–249.
  • Goyal RN, Rana ARS, Chasta H. Electrochemical and peroxidase-catalyzed oxidation of epinephrine. Electrochim Acta. 2012;59:492–498.
  • Ren W, Luo HQ, Li NB. Electrochemical behavior of epinephrine at a glassy carbon electrode modified by electrodeposited films of caffeic acid. Sensors. 2006;6(2):80–89.
  • Li H, Luo W, Hu XM. Determination of enantiomeric purity for epinephrine by high performance liquid chromatography. Chin J Chromatogr. 1999;17:403–405.
  • Fotopoulou MA, Ioannou PC. Post-column terbium complexation and sensitized fluorescence detection for the determination of norepinephrine, epinephrine and dopamine using high-performance liquid chromatography. Anal Chim Acta. 2002;462(2):179–185.
  • Philip BM, Andrea RK, Alison P, et al. Quantitative assay for epinephrine in dental anesthetic solutions by capillary electrophoresis. Analyst. 1998;123(7):1461–1463.
  • Zheng XW, Guo ZH, Zhang ZJ. Flow-injection electrogenerated chemiluminescence determination of epinephrine using luminol. Anal Chim Acta. 2001;441(1):81–86.
  • Lisdat F, Wollenberger U. Trienzyme amplification system for the detection of catechol and catecholamines using internal co-substrate regeneration. Anal. Lett. 1998;31(8):1275–1285.
  • Atsushi K, Kentaro H, Takehiko S, et al. Chemiluminescence sensor with Mn(III)-tetrakis(4-Sulfonatophyl)-porphyrin immobilized on dioctadecyldimethylammonium chloride bi layer membranes incorporated into PVC film. Anal. Lett. 1996;29(5):673–685.
  • Niu LM, Luo HQ, Li NB. Electrochemical behavior of epinephrine at a penicillamine self-assembled gold electrode and its analytical application. Microchim Acta. 2005;150(1):87–93.
  • Yang JH, Zhang GL, Wu X, et al. Fluorimetric determination of epinephrine with o-phenylenediamine. Anal Chim Acta. 1998;363(1):105–110.
  • Fatma BS. Spectrophotometric and fluorimetric determination of catecholamines. Anal Lett. 1993;(1993)(26):281–294.
  • Carrera V, Sabater E, Vilanova E, et al. A simple and rapid HPLC-MS method for the simultaneous determination of epinephrine, norepinephrine, dopamine and 5-hydroxytryptamine: Application to the secretion of bovine chromaffin cell cultures. J Chromatogr B. 2007;847(2):88–94.
  • Sabbioni C, Saracino MA, Mandrioli R, et al. Simultaneous liquid chromatographic analysis of catecholamines and 4-hydroxy-3-methoxyphenylethylene glycol in human plasma: comparison of amperometric and coulometric detection. J Chromatogr A. 2004;1032(1–2):65–71.
  • Zhang D, Ouyang X, Ma W, et al. Voltammetric determination of folic acid using adsorption of methylene blue onto electrodeposited of reduced graphene oxide film modified glassy carbon electrode. Electroanalysis. 2016;28(2):312–319.
  • Unnikrishnan B, Yang YL, Chen SM. Amperometric determination of folic acid at multi-walled carbon nanotube-polyvinyl sulfonic acid composite film modified glassy carbon electrode. Int J Electrochem Sci. 2011;6:3224–3237.
  • Ensafi AA, Karimi-Maleh H. Modified multiwall carbon nanotubes paste electrode as a sensor for simultaneous determination of 6-thioguanine and folic acid using ferrocenedicarboxylic acid as a mediator. J Electroanal Chem. 2010;640(1–2):75–83.
  • Safaei M, Beitollahi H, Shishehbore MR. Simultaneous determination of epinephrine and folic acid using the Fe3O4@SiO2/GR nanocomposite modified graphite. Russ J Electrochem. 2018;54(11):851–859.
  • Kaur B, Srivastava R. Simultaneous determination of epinephrine, paracetamol, and folicacid using transition metal ion-exchanged polyaniline–zeoliteorganic–inorganic hybrid materials. Sens Actuat B: Chem. 2015;211:476–488.
  • Pacher P, Nivorozhkin A, Szabó C. Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharm Rev. 2006;58:87–114.
  • Raj MA, John SA. Electrochemical determination of xanthine oxidase inhibitor drug in urate lowering therapy using graphene nano sheets modified electrode. Elec.Chim.Acta 2014;117:360–366.
  • Teradale AB, Lamani SD, Das SN. Up growth effect of cetyltrimethylammonium bromide with carbon paste electrode for the electrochemical determination of allopurinol and its biological activities. Anal Bioanal Electrochem. 2016;8:814–829.
  • Cappola TP, Kass DA, Nelson GS, et al. Allopurinol improves myocardial efficiency in patients with idiopathic dilated cardiomyopathy. Circulation. 2001;104(20):2407–2411.
  • Lakshmi D, Whitcombe MJ, Davis F, et al. Electrochemical detection of uric acid in mixed and clinical samples. A Rev Electroanalysis. 2011;23(2):305–320.
  • Khayoon WS, Al-Abaichy MQ, Jasim M, et al. Spectrophotometric determination of allopurinol in tablet formulation. J Physical Sci. 2008;19:23–30.
  • Teradale AB, Lamani SD, Ganesh PS, et al. CTAB immobilized carbon paste electrode for the determination of mesalazine: a cyclic voltammetric method. Sens Bio-sens Res. 2017;15:53–59.
  • Ganesh PS, Shimoga G, Kim SY, et al. Quantum chemical studies and electrochemical investigations of pyrogallol red modified carbon paste electrode fabrication for sensor application. Microchem J. 2021;167:106260.
  • Ganesh PS, Shimoga G, Lee SH, et al. Simultaneous electrochemical sensing of dihydroxy benzene isomers at cost-effective allura red polymeric film modified glassy carbon electrode. J Anal Sci Technol. 2021;12(1):1–14.
  • Ghica ME, Brett CMA. Simple and efficient epinephrine sensor based on carbon nanotube modified carbon film electrodes. Anal Lett. 2013;46(9):1379–1393.
  • Laviron E. General expression of the linear potential sweep voltammograms in the case of diffusion less electrochemical systems. J. Electroanal. Chem. 1979;101(1):19–28.
  • Li C. Electrochemical determination of dipyridamole at a carbon paste electrode using cetyltrimethyl ammonium bromide as enhancing element. Colloid Surf B. 2007;55(1):77–83.
  • Yunhua W, Xiaobo J, Shengshui H. Studies on electrochemical oxidation of azithromycin and its interaction with bovine serum albumin. Bioelectrochemistry. 2004;64(1):91–97.
  • Sun W, Wang Y, Lu Y, et al. High sensitive simultaneously electrochemical detection of hydroquinone and catechol with a poly(crystal violet) functionalized graphene modified carbon ionic liquid electrode. Sens Actuators B. 2013;188:564–570.
  • Aslanoglu M, Kutluay A, Karabulut S, et al. Voltammetric determination of adrenaline using a poly(1-Methylpyrrole) modified glassy carbon electrode. J. Chin. Chem. Soc. 2008;55(4):794–800.
  • Shahrokhian S, Ghalkhani M, Amini MK. Application of carbon-paste electrode modified with iron phthalocyanine for voltammetric determination of epinephrine in the presence of ascorbic acid and uric acid. Sens. Actuators B. 2009;137(2):669–675.
  • Valentini F, Palleschi G, Lopez Morales E, et al. Functionalized single-walled carbon nanotubes modified microsensors for the selective response of epinephrine in the presence of ascorbic acid. Electroanalysis. 2007;19(7–8):859–869.
  • Mazloum-Ardakani M, Rajabzadeh N, Dehghani-Firouzabadi A, et al. Carbon nanoparticles and a new derivative of hydroquinone for modification of carbon paste electrode for simultaneous determination of epinphrine and acetaminophen. Anal Methods. 2012;4(7):2127–2133.
  • Wang Y, Chen Z. A novel poly(taurine) modified glassy carbon electrode for the simultaneous determination of epinephrine and dopamine. Colloids. Surf. B. 2009;74(1):322–327.
  • Liu X, Ye D, Luo L, et al. Highly sensitive determination of epinephrine by a MnO2/Nafion modified glassy carbon electrode. J Electroanal Chem. 2012;665:1–5.
  • Ren W, Luo HQ, Li NB. Simultaneous voltammetric measurement of ascorbic acid, epinephrine and uric acid at a glassy carbon electrode modified with caffeic acid. Biosens Bioelectron. 2006b;21(7):1086–1092.
  • Wang J, Tang P, Zhao F-Q, et al. Voltammetric response of epinephrine at carbon nanotube modified glassy carbon electrode and activated glassy carbon electrode. Wuhan Univ. J. Nat. Sci. 2005;10(5):913–918.
  • Shankar SS, Swamy BEK. Detection of epinephrine in presence of serotonin and ascorbic acid by TTAB modified carbon paste electrode: a voltammetric study. Int J Electrochem Sci. 2014;9:1321–1339.
  • Agboola BO, Vilakazi SL, Ozoemena KI. Electrochemistry at cobalt(II) tetrasulfophthalocyanine-multi-walled carbon nanotubes modified glassy carbon electrode: a sensing platform for efficient suppression of ascorbic acid in the presence of epinephrine. J Solid State Electrochem. 2009;13(9):1367–1379.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.