110
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Facile synthesis of β-cyclodextrin decorated Super P Li carbon black for the electrochemical determination of methyl parathion

, , , , &

References

  • Zhang R, Zhang L, Yu R, et al. Rapid and sensitive detection of methyl parathion in rice based on carbon quantum dots nano-fluorescence probe and inner filter effect. Food Chem. 2023;413:135679. doi:10.1016/j.foodchem.2023.135679
  • Guo W, Hu C, Li S, et al. Selection and electrochemical-sensor application of an DNA-aptamer for methyl parathion detection. Anal Chim Acta. 2023;1241:340780. doi:10.1016/j.aca.2023.340780
  • Duan S, Wu X, Shu Z, et al. Curcumin-enhanced MOF electrochemical sensor for sensitive detection of methyl parathion in vegetables and fruits. Microchem J. 2023;184:108182. doi:10.1016/j.microc.2022.108182
  • Li R, Shang M, Zhe T, et al. Sn/MoC@NC hollow nanospheres as Schottky catalyst for highly sensitive electrochemical detection of methyl parathion. J Hazard Mater. 2023;447:130777. doi:10.1016/j.jhazmat.2023.130777
  • Guo M, Li F, Ran Q, et al. Facile fabrication of Zr-based metal–organic framework/Ketjen black-carbon nanotubes composite sensor for highly sensitive detection of methyl parathion. Microchem J. 2023;190:108709. doi:10.1016/j.microc.2023.108709
  • Lv Y, Yang T, Hou X, et al. Zirconia nanofibers-loaded reduced graphene oxide fabrication for specific electrochemical detection of methyl parathion. J Alloy Compd. 2022;904:163798. doi:10.1016/j.jallcom.2022.163798
  • Ilager D, Shetti NP, Foucaud Y, et al. Graphene/g-carbon nitride (GO/g-C3N4) nanohybrids as a sensor material for the detection of methyl parathion and carbendazim. Chemosphere. 2022;292:133450. doi:10.1016/j.chemosphere.2021.133450
  • Li F, Liu R, Dubovyk V, et al. Rapid determination of methyl parathion in vegetables using electrochemical sensor fabricated from biomass-derived and β-cyclodextrin functionalized porous carbon spheres. Food Chem. 2022;384:132643. doi:10.1016/j.foodchem.2022.132643
  • Gan T, Li JB, Li HX, et al. Synthesis of Au nanorod-embedded and graphene oxide-wrapped microporous ZIF-8 with high electrocatalytic activity for the sensing of pesticides. Nanoscale. 2019;11(16):7839. doi:10.1039/C9NR01101C
  • Zhao H, Li Y, Shen D, et al. Significantly enhanced electrochemical properties of LiMn2O4-based composite microspheres embedded with nano-carbon black particles. J Mater Res Technol. 2020;9(4):7027. doi:10.1016/j.jmrt.2020.05.011
  • Zhao H, Liu Y, Li F, et al. Facile synthesis of silicon dioxide nanoparticles decorated multi-walled carbon nanotubes with graphitization and carboxylation for electrochemical detection of gallic acid. Ceram Int. 2023;49(16):26289. doi:10.1016/j.ceramint.2023.05.135
  • Liu Y, Wang Q, Zhu G, et al. Novel electrochemical sensing platform based on palygorskite nanorods/Super P Li carbon nanoparticles-graphitized carbon nanotubes nanocomposite for sensitive detection of niclosamide. Ceram Int. 2023;49(13):21234. doi:10.1016/j.ceramint.2023.03.253
  • Zhao H, Chang Y, Liu R, et al. Facile synthesis of Vulcan XC-72 nanoparticles-decorated halloysite nanotubes for the highly sensitive electrochemical determination of niclosamide. Food Chem. 2021;343:128484. doi:10.1016/j.foodchem.2020.128484
  • Zhao H, Hu N, Xu R, et al. Spray-drying synthesis of LiMnO2 @VXC-72R composite microspheres with excellent electrochemical performance. Ceram Int. 2023;46(13):21805. doi:10.1016/j.ceramint.2020.05.256
  • Liu Y, Wu T, Zhao H, et al. An electrochemical sensor modified with novel nanohybrid of Super-P carbon black@zeolitic-imidazolate-framework-8 for sensitive detection of carbendazim. Ceram Int. 2023;49(14):23775. doi:10.1016/j.ceramint.2023.04.217
  • Zhao H, Guo M, Li F, et al. Fabrication of gallic acid electrochemical sensor based on interconnected Super-P carbon black@mesoporous silica nanocomposite modified glassy carbon electrode. J Mater Res Technol. 2023;24:2100. doi:10.1016/j.jmrt.2023.03.129
  • Zhou W, Li W, Xie Y, et al. Fabrication of noncovalently functionalized brick-like β-cyclodextrins/graphene composite dispersions with favorable stability. RSC Adv. 2014;4(6):2813. doi:10.1039/C3RA45666H
  • Yan Z, Xing L, Zhao L, et al. β-Cyclodextrin and graphene oxide co-strengthened AgRu bimetal mesoporous nanozyme: An efficient strategy for visual detection and removal of toxic Hg2+ and Cl−. J Environ Chem Eng. 2022;10(5):108242. doi:10.1016/j.jece.2022.108242
  • Zhao H, Zhu G, Li F, et al. 3D interconnected honeycomb-like ginkgo nut-derived porous carbon decorated with β-cyclodextrin for ultrasensitive detection of methyl parathion. Sensor Actuat B-Chem. 2023;380:133309. doi:10.1016/j.snb.2023.133309
  • Li F, Liu R, Dubovyk V, et al. Three-dimensional hierarchical porous carbon coupled with chitosan based electrochemical sensor for sensitive determination of niclosamide. Food Chem. 2022;366:130563. doi:10.1016/j.foodchem.2021.130563
  • Xue Y, Zheng S, Sun Z, et al. Alkaline electrochemical advanced oxidation process for chromium oxidation at graphitized multi-walled carbon nanotubes. Chemosphere. 2017;183:156. doi:10.1016/j.chemosphere.2017.05.115
  • Zhang S, Shao Y, Yin G, et al. Self-assembly of Pt nanoparticles on highly graphitized carbon nanotubes as an excellent oxygen-reduction catalyst. Appl Catal B-Environ. 2011;102(3):372. doi:10.1016/j.apcatb.2010.11.029
  • Zhao H, Liu S, Cai Y, et al. A simple and mass production preferred solid-state procedure to prepare the LiSixMgxMn2−2xO4 (0≤x≤0.10) with enhanced cycling stability and rate capability. J Alloy Compd. 2016;671:304. doi:10.1016/j.jallcom.2016.02.091
  • Zhao H, Chen B, Cheng C, et al. A simple and facile one-step strategy to synthesize orthorhombic LiMnO2 nano-particles with excellent electrochemical performance. Ceram Int. 2015;41(10):15266. doi:10.1016/j.ceramint.2015.07.213
  • Deng Q, Wang R, Wang Y, et al. Exploration of bifunctional Vanadium-based Metal-Organic framework with double active centers for Potassium-ion batteries. J Colloid Interf Sci. 2022;628:556. doi:10.1016/j.jcis.2022.08.098
  • Zhang Z, Liu X, Wu Y, et al. Synthesis and characterization of spherical Li2Fe0.5V0.5SiO4/C composite for high-performance cathode material of lithium-ion secondary batteries. J Electrochem Soc. 2015;162(4):A737. doi:10.1149/2.0781504jes
  • Zhao H, Li F, Shu X, et al. Environment-friendly synthesis of high-voltage LiNi0.5Mn1.5O4 nanorods with excellent electrochemical properties. Ceram Int. 2018;44(16):20575. doi:10.1016/j.ceramint.2018.07.206
  • Zhao H, Wang J, Wang G, et al. Facile synthesis of orthorhombic LiMnO2 nanorods by in-situ carbothermal reduction: Promising cathode material for Li ion batteries. Ceram Int. 2017;43(13):10585. doi:10.1016/j.ceramint.2017.04.158
  • Zhang Z, Liu X, Wu Y, et al. Graphene modified Li2FeSiO4/C composite as a high performance cathode material for lithium-ion batteries. J Solid State Electrochem. 2014;19(2):469. doi:10.1007/s10008-014-2624-7
  • Zhang Z, Liu X, Wang L, et al. Synthesis of Li2FeSiO4/C nanocomposite via a hydrothermal-assisted sol–gel process. Solid State Ion. 2015;276:33–39. doi:10.1016/j.ssi.2015.03.032
  • Shu X, Zhao H, Hu Y, et al. Magnesium and silicon co-doped LiNi0.5Mn1.5O4 cathode material with outstanding cycling stability for lithium-ion batteries. Vacuum. 2018;156:1. doi:10.1016/j.vacuum.2018.07.007
  • Zhao H, Liu S, Wang Z, et al. LiSixMn2−xO4 (x≤0.10) cathode materials with improved electrochemical properties prepared via a simple solid-state method for high-performance lithium-ion batteries. Ceram Int. 2016;42(12):13442. doi:10.1016/j.ceramint.2016.05.131
  • Deng Q, Pei J, Fan C, et al. Potassium salts of para-aromatic dicarboxylates as the highly efficient organic anodes for low-cost K-ion batteries. Nano Energy. 2017;33:350–355. doi:10.1016/j.nanoen.2017.01.016
  • Zhang Z, Liu X, Wang L, et al. Fabrication and characterization of carbon-coated Li2FeSiO4 nanoparticles reinforced by carbon nanotubes as high performance cathode materials for lithium-ion batteries. Electrochim Acta. 2015;168:8–15. doi:10.1016/j.electacta.2015.04.002
  • Zhao H, Liu S, Liu X, et al. Orthorhombic LiMnO2 nanorods as cathode materials for lithium-ion batteries: Synthesis and electrochemical properties. Ceram Int. 2016;42(7):9319. doi:10.1016/j.ceramint.2016.01.207
  • Deng Q, Zhao Z, Wang Y, et al. A stabilized polyacrylonitrile-encapsulated matrix on a nanolayered vanadium-based cathode material facilitating the K‑storage performance. ACS Appl Mater Interf. 2022;14(12):14243–14252. doi:10.1021/acsami.2c00548
  • Suea-Ngam A, Rattanarat P, Chailapakul O, et al. Electrochemical droplet-based microfluidics using chip-based carbon paste electrodes for high-throughput analysis in pharmaceutical applications. Anal Chim Acta. 2015;883:45. doi:10.1016/j.aca.2015.03.008
  • Wang Z, Liu Y, Li F, et al. Electrochemical sensing platform based on graphitized and carboxylated multi-walled carbon nanotubes decorated with cerium oxide nanoparticles for sensitive detection of methyl parathion. J Mater Res Technol. 2022;19:3738. doi:10.1016/j.jmrt.2022.06.120
  • Zhao H, Ma H, Li X, et al. Nanocomposite of halloysite nanotubes/multi-walled carbon nanotubes for methyl parathion electrochemical sensor application. Appl Clay Sci. 2021;200:105907. doi:10.1016/j.clay.2020.105907
  • Zhao H, Liu B, Li Y, et al. One-pot green hydrothermal synthesis of bio-derived nitrogen-doped carbon sheets embedded with zirconia nanoparticles for electrochemical sensing of methyl parathion. Ceram Int. 2020;46(12):19713. doi:10.1016/j.ceramint.2020.04.277
  • Jiang ZM, Li GY, Zhang MX. Electrochemical sensor based on electro-polymerization of beta-cyclodextrin and reduced-graphene oxide on glassy carbon electrode for determination of gatifloxacin. Sensor Actuat B-Chem. 2016;228:59. doi:10.1016/j.snb.2016.01.013
  • Kokulnathan T, Wang TJ, Thangapandian M, et al. Synthesis and characterization of hexagonal boron nitride/halloysite nanotubes nanocomposite for electrochemical detection of furazolidone. Appl Clay Sci. 2020;187:105483. doi:10.1016/j.clay.2020.105483
  • Gong JM, Miao XJ, Wan HF, et al. Facile synthesis of zirconia nanoparticles-decorated graphene hybrid nanosheets for an enzymeless methyl parathion sensor. Sensor Actuat B-Chem. 2012;162(1):341. doi:10.1016/j.snb.2011.12.094
  • De Oliveira PR, Kalinke C, Gogola JL, et al. The use of activated biochar for development of a sensitive electrochemical sensor for determination of methyl parathion. J Electroanal Chem. 2017;799:602. doi:10.1016/j.jelechem.2017.06.020
  • Wang M, Li ZY. Nano-composite ZrO2/Au film electrode for voltammetric detection of parathion. Sensor Actuat B-Chem. 2008;133(2):607. doi:10.1016/j.snb.2008.03.023
  • Wang ZP, Ma BK, Shen C, et al. Direct, selective and ultrasensitive electrochemical biosensing of methyl parathion in vegetables using Burkholderia cepacia lipase@MOF nanofibers-based biosensor. Talanta. 2019;197:356. doi:10.1016/j.talanta.2019.01.052
  • Zhang D, Yu DJ, Zhao WJ, et al. A molecularly imprinted polymer based on functionalized multiwalled carbon nanotubes for the electrochemical detection of parathion-methyl. Analyst. 2012;137(11):2629. doi:10.1039/c2an35338e
  • Ma JC, Zhang WD. Gold nanoparticle-coated multiwall carbon nanotube-modified electrode for electrochemical determination of methyl parathion. Microchim Acta. 2011;175(3–4):309. doi:10.1007/s00604-011-0681-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.