174
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Bi2O3 nanoparticles: phytogenic synthesis, effect of calcination on physico-chemical characteristics and photocatalytic activity

ORCID Icon, &
Pages 236-250 | Received 13 Jul 2023, Accepted 05 Sep 2023, Published online: 18 Sep 2023

References

  • Sammes NM, Tompsett GA, Näfe H, et al. Bismuth based oxide electrolytes— structure and ionic conductivity. J Eur Ceram Soc. 1999;19(10):1801–1826. doi: 10.1016/S0955-2219(99)00009-6
  • Mahmouda WE, Al-Ghamdia AA. Synthesis and properties of bismuth oxide nanoshell coated polyaniline nanoparticles for promising photovoltaic properties. Polym Adv Technol. 2011;22(6):877–881. doi: 10.1002/pat.1591
  • Gou X, Li R, Wang G, et al. Room-temperature solution synthesis of Bi2O3 nanowires for gas sensing application. Nanotechnology. 2009;20(49):495501. doi: 10.1088/0957-4484/20/49/495501
  • Patel VK, Ganguli A, Kant R, et al. Micropatterning of nanoenergetic films of Bi2O3/Al for pyrotechnics. RSC Adv. 2015;5(20):14967–14973. doi: 10.1039/C4RA15476B
  • Yan Y, Zhou Z, Cheng Y, et al. Template-free fabrication of α- and β-Bi2O3 hollow spheres and their visible-light photocatalytic activity for water purification. J Alloys Compd. 2014;605:102–108. doi: 10.1016/j.jallcom.2014.03.111
  • Oviedo MJ, Contreras OE, Rosenstein Y, et al. New bismuth germanate oxide nanoparticle material for biolabel applications in medicine. J Nanomater. 2016;2016:1–10. doi: 10.1155/2016/9782625
  • Jassim AMN, Farhan SA, Salman JAS, et al. Study the antibacterial effect of bismuth oxide and tellurium nanoparticles. Int J Chem Biol Sci. 2015;1:81–84.
  • Yilmaz S, Turkoglu O, Ari M, Belenli I Electrical conductivity of the ionic conductor tetragonal (Bi2O3)1-x(Eu2O3)x. Ceramica. 2011;57:185. doi:10.1590/S0366-69132011000200009
  • Akshatha S, Sreenivasa S, Parashurama L, et al. Synergistic effect of hybrid Ce3+/Ce4+ doped Bi2O3 nano-sphere photocatalyst for enhanced photocatalytic degradation of alizarin red S dye and its NUV excited photoluminescence studies. J Environ Chem Eng. 2019;7(3):103053. doi:10.1016/j.jece.2019.103053
  • Zhou L, Wang W, Xu H, et al. Bi2O3 hierarchical nanostructures: controllable synthesis, growth mechanism, and their application in photocatalysis. Chem: Eur J. 2009;15(7):1776–1782. doi: 10.1002/chem.200801234
  • Ali FS, Ragamathunnisa M, Al Marzouqi F, et al. Synthesis and characterization of Bi2O3 NPS and photocatalytic application with methylene blue. Journal Of Optoelectronic And Biomedical Materials. 2021;13(3):95–106. doi: 10.15251/JOBM.2021.133.95
  • Mallahi M, Shokuhfar A, Vaezi MR, et al. Synthesis and characterization of bismuth oxide nanoparticles via sol-gel method. Am J Eng Res. 2014;3(4):162–165. doi: 10.17950/ijer/v3s4/420
  • Pan C, Yan Y, Li H, et al. Synthesis of bismuth oxide nanoparticles by a templating method and its photocatalytic performance. Adv Mater Res. 2012;557-559:615–618. doi: 10.4028/www.scientific.net/AMR.557-559.615
  • Ahamed M, Akhtar MJ, Majeed Khan MA, et al. Facile synthesis of Zn-doped Bi2O3 nanoparticles and their selective cytotoxicity toward cancer cells. ACS Omega. 2021;6(27):17353–17361. doi: 10.1021/acsomega.1c01467
  • Senthamilselvi R, Velavan R. Microstructure and photocatalytic properties of bismuth oxide (Bi2O3) nanocrystallites. Malaya Journal Of Matematik. 2020;5(2):4870–4874. doi: 10.26637/MJM0S20/1260
  • Patil MM, Deshpande VV, Dhage SR, et al. Synthesis of bismuth oxide nanoparticles at 100 °C. Materials Letters. 2005;59(19–20):2523–2525. doi: 10.1016/j.matlet.2005.03.037
  • Baig N, Kammakakam I, Falath W. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater Adv. 2021;2(6):1821. doi: 10.1039/d0ma00807a
  • Wang Y, O’Connor D, Shen Z, et al. Green synthesis of nanoparticles for the remediation of contaminated waters and soils: constituents, synthesizing methods, and influencing factors. J Clean Prod. 2019;226:540–549. doi: 10.1016/j.jclepro.2019.04.128
  • Naikoo GA, Mustaqeem M, Hassan IU, et al. Bioinspired and green synthesis of nanoparticles from plant extracts with antiviral and antimicrobial properties: a critical review. J Saudi Chem Soc. 2021;25(9):101304. doi: 10.1016/j.jscs.2021.101304
  • Jayapriya G, Maheswari T, Vennila M. Photo catalytic degradation effect of green and chemically synthesized bismuth oxide nanoparticles on Congo red dye. IJEDR. 2019;7(3):517–525.
  • Motakef-Kazemi N, Yaqoubi M. Green synthesis and characterization of bismuth oxide nanoparticle using Mentha pulegium extract. Iranian J Pharm Res. 2020;19(2):70–79. doi: 10.22037/ijpr.2019.15578.13190
  • Nurmalasari N, Yulizar Y, Apriandanu DOB, et al. Bi2O3 nanoparticles: synthesis, characterizations, and photocatalytic activity. IOP Conf Ser Mater Sci Eng. 2020;763(1):012036. doi: 10.1088/1757-899X/763/1/012036
  • Rao RP, Mishra S, Tripathi RM, et al. Bismuth oxide nanorods: phytochemical mediated one-pot synthesis and growth mechanism. Inorganic and Nano-Metal Chemistry; 2021. DOI:10.1080/24701556.2021.1980037.
  • Meena PL, Surela AK, Poswal K, et al. Biogenic synthesis of Bi2O3 nanoparticles using cassia fistula plant pod extract for the effective degradation of organic dyes in aqueous medium, biomass conversion and Biorefinery. Biomass Convers Biorefin. 2022. doi:10.1007/s13399-022-02605-y.
  • Meena PL, Surela AK, Saini JK, et al. Millettia pinnata plant pod extract mediated synthesis of Bi2O3 for degradation of water pollutants. Environ Sci Pollut Res. 2022b;29(52):79253–79271. doi: 10.1007/s11356-022-21435-z
  • Abdallah EM, Elsharkawy ER, Ed-Dra A. Biological activities of methanolic leaf extract of Ziziphus mauritiana. Biosci Biotechnol Res Commun. 2016;9(4):605–614. doi: 10.21786/bbrc/9.4/6
  • Najafi S. Phytochemical screening and antibacterial activity of leaf extract of Ziziphus mauritiana Lam, Int. Res J Appl Basic Sci. 2013;4:3274–3276.
  • Asimuddin M, Shaik MR, Fathima N, et al. Study of antibacterial properties of Ziziphus mauritiana based green synthesized silver nanoparticles against various bacterial strains. Sustainability. 2020;12(4):1484. doi: 10.3390/su12041484
  • Sadeghi B. Zizyphus mauritiana extract-mediated green and rapid synthesis of gold nanoparticles and its antibacterial activity. J Nanostruct Chem. 2015;5(3):265–273. doi: 10.1007/s40097-015-0157-y
  • Memon R, AA M, STH S, et al. Application of synthesized copper nanoparticles using aqueous extract of Ziziphus mauritiana L. leaves as a colorimetric sensor for the detection of Ag+. Turk J Chem. 2020;44(5):1376–1385. doi: 10.3906/kim-2001-51
  • Pansambal S, Gavande S, Ghotekar S, et al. Green synthesis of CuO nanoparticles using Ziziphus mauritiana L. Extract And Its Characterizations. 2017;8:1388–1392. IJSRST1731028 (3).
  • Saman S, Balouch A, Talpur FN, et al. Green synthesis of MgO nanocatalyst by using Ziziphus mauritiana leaves and seeds for biodiesel production. Appl Organomet Chem. 2021;35(5):e6199. doi: 10.1002/aoc.6199
  • Rahman A, Tan AL, Harunsani MH, et al. Visible light induced antibacterial and antioxidant studies of ZnO and Cu-doped ZnO fabricated using aqueous leaf extract of Ziziphus mauritiana Lam. Lam Journal Of Environmental Chemical Engineering. 2021;9(4):105481. doi: 10.1016/j.jece.2021.105481
  • Miedema AR, Boom R, De Boer FR. On the heat of formation of solid alloys. J Less Common Met. 1975;41(2):283–298. doi: 10.1016/0022-5088(75)90034-X
  • Xiaohong W, Wei Q, Weidong H. Thin bismuth oxide films prepared through the sol–gel method as photocatalyst. J Mol Catal A Chem. 2007;261(2):167–171. doi: 10.1016/j.molcata.2006.08.016
  • Astuti Y, Listyani BM, Suyati L, et al. Bismuth oxide prepared by Sol-Gel Method: variation of physicochemical characteristics and photocatalytic activity due to difference in calcination temperature. Indones J Chem. 2021;21(1):108–117. doi: 10.22146/ijc.53144
  • Selvamani T, Anandan S, Granone L, et al. Phase-controlled synthesis of bismuth oxide polymorphs for photocatalytic applications. Mater Chem Front. 2018;2(9):1664–1673. doi: 10.1039/c8qm00221e
  • Khot AC, Desai ND, Khot KV, et al. Bipolar resistive switching and memristive properties of hydrothermally synthesized TiO2 nanorod array: effect of growth temperature. Mater Design. 2018;151. doi: 10.1016/j.matdes.2018.04.046
  • John KI, Adenle AA, Adeleye AT, et al. Unravelling the effect of crystal dislocation density and microstrain of titanium dioxide nanoparticles on tetracycline removal performance. Chem Phys Lett. 2021;776:138725. doi: 10.1016/j.cplett.2021.138725
  • Fan H, Gao G, Wang G, et al. Infrared, Raman and XPS spectroscopic studies of Bi2O3–B2O3–GeO2 glasses. Solid State Science. 2010;12(4):541–545. doi: 10.1016/j.solidstatesciences.2009.12.021
  • Ardelean I, Cora S, Rusu D. EPR and FT-IR spectroscopic studies of Bi2O3–B2O3–CuO glasses. Physica B. 2008;403(19–20):3682–3685. doi: 10.1016/j.physb.2008.06.016
  • Angermann A, Töpfer J. Synthesis of nanocrystalline mn–zn ferrite powders through thermolysis of mixed oxalates. Ceram Int. 2011;37(3):995–1002. doi: 10.1016/j.ceramint.2010.11.019
  • Chen X, Cao Y, Zhang H, et al. Hydrothermal synthesis and characteristics of 3-D hydrated bismuth oxalate coordination polymers with open-channel structure. J Solid State Chem. 2008;181(5):1133–1140. doi: 10.1016/j.jssc.2008.02.018
  • Ghosh M, Dilawar N, Bandyopadhyay A, et al. Phonon dynamics of zn (mg, cd) O alloy nanostructures and their phase segregation. J Appl Phys. 2009;106(8):084306. doi: 10.1063/1.3243341
  • El-Mallawany R. Theoretical and experimental IR spectra of binary rare earth tellurite glasses—1. Infrared Phys. 1989;29(2–4):781–785. doi: 10.1016/0020-0891(89)90125-5
  • Jin X, Sun D, Zhang M, et al. Investigation on FTIR spectra of barium calcium titanate ceramics. J Eletcroceram. 2009;22(1–3):285–290. doi: 10.1007/s10832-007-9402-1
  • Trivedi MK, Nayak G, Patil S, et al. Impact of Biofield treatment on atomic and structural characteristics of barium titanate powder, Ind. Eng Manage. 2015;4(3): doi: 10.4172/2169-0316.1000166
  • Kang SJL. Sintering densification, grain growth and microstructure. Oxford: Elsevier; 2005. p. 265.
  • Verma R, Chauhan A, Neha Batoo KM, et al. Effect of calcination temperature on structural and morphological properties of bismuth ferrite nanoparticles. Ceramics International. 2020;47(3):3680–3691. doi: 10.1016/j.ceramint.2020.09.220
  • Tauc J. Absorption edge and internal electric fields in amorphous semiconductors. Mater Res Bull. 1970;5(8):721–729. doi: 10.1016/0025-5408(70)90112-1
  • Sang Y, Cao X, Dai G, et al. Facile one-pot synthesis of novel hierarchical Bi2O3/Bi2S3 nanoflower photocatalyst with intrinsic p–n junction for efficient photocatalytic removals of RhB and Cr(VI). J Hazard Mater. 2020;381:120942–120972. doi: 10.1016/j.jhazmat.2019.120942
  • Xu Y, Lin W, Wang H, et al. Dual-functional polyethersulfone composite nanofibrous membranes with synergistic adsorption and photocatalytic degradation for organic dyes. Compos Sci Technol. 2020;199:108353. doi: 10.1016/j.compscitech.2020.108353
  • Zhong S, Zou S, Peng X, et al. Effects of calcination temperature on preparation and properties of europium-doped bismuth oxide as visible light catalyst. J SoL-Gel Sci Technol. 2014;74(1):220–226. doi: 10.1007/s10971-01-4-3602-3
  • Hou J, Yang C, Wang Z, et al. In situ synthesis of α–β phase heterojunction on Bi2O3 nanowires with exceptional visible-light photocatalytic performance, Appl. Catal B. 2013;142-143:504–511. doi: 10.1016/j.apcatb.2013.05.050
  • Peng D, Xiaoguo D, Zili X. Photocatalytic activities of Bi2O3 nanopartic les prepared by microemulsion method on benzene, toluene and xylene. J Jilin Univ (Sci Ed). 2004;42(3):451–454.
  • Weidong H, Wei Q, Xiaohong W, et al. The photocatalytic properties of bismuth oxide films prepared through the sol–gel method. Thin Solid Films. 2007;515(13):5362–5365. doi: 10.1016/j.tsf.2007.01.031
  • Wen Z, Weichang H, Xin X, et al. Visible-light photocatalytic degradation of RhB by Bi2O3. Polymorphs Chin J Inorg Chem. 2009;25(11):1971–1976.
  • Huang Q, Zhang S, Cai C, et al. β- and α- Bi2O3 nanoparticles synthesized via microwave-assisted method and their photocatalytic activity towards the degradation of rhodamine B. Mater Lett. 2011;65(6):988–990. doi: 10.1016/j.matlet.2010.12.055
  • Joice JAI, Sivakumar T, Ramakrishnan RD, et al. Visible active metal decorated titania catalysts for the photocatalytic degradation of amidoblack-10B. Chem Eng J. 2012;210:385–397. doi: 10.1016/j.cej.2012.08.103
  • Zheng P, Pan Z, Li H, et al. Effect of different type of scavengers on the photocatalytic removal of copper and cyanide in the presence of TiO2@yeast hybrids. J Mater Sci Mater Electron. 2015;26(9):6399–6410. doi: 10.1007/s10854-015-3229-3
  • Saeed M, Muneer M, Haq AU. Photocatalysis: an effective tool for photodegradation of dyes—a review. Environ Sci Pollut Res. 2022;29(1):293–311. doi: 10.1007/s11356-021-16389-7
  • Zhang N, Yang MQ, Liu S, et al. Waltzing with the versatile platform of graphene to synthesize composite photocatalysts. Chem Rev. 2015;115(18):10307–10377.
  • Chowdhury PR, Bhattacharyya KG. Retracted article: synthesis and characterization of mn/Co/Ti LDH and its utilization as a photocatalyst in visible light assisted degradation of aqueous rhodamine B. RSC Adv. 2016;6(113):112016–112034. doi: 10.1039/c6ra24288j
  • Shamsabadi MK, Behpour M, Babaheidari AK, et al. Efficiently enhancing photocatalytic activity of NiO-ZnO doped onto nanozeolite by synergistic effects of p-n heterojunction, supporting and zeolite nanoparticles in photo-degradation of eriochrome black T and methyl orange. Journal Of Photochemistry And Photobiology A: Chemistry. 2017;343(133):133–143. doi: 10.1016/j.jphotochem.2017.05.038
  • Astuti Y, Elesta PP, Widodo DS, et al. Hydrazine and urea fueled solution combustion method for Bi2O3 synthesis: characterization of physicochemical properties and photocatalytic activity. Bull Chem React Eng Catal. 2020;15(1):104–111. doi: 10.9767/bcrec.15.1.5483.104-111
  • Li B, Xu H-Y, Liu Y-L, et al. Unveiling the structure–activity relationships of ofloxacin degradation by CoO-activated peroxymonosulfate: from microstructures to exposed facets. Chem Eng J. 2023;467:143396. doi: 10.1016/j.cej.2023.143396
  • Xu H-Y, Zhang S-Q, Wang Y-F, et al. New insights into the photocatalytic mechanism of pristine ZnO nanocrystals: from experiments to DFT calculations. Appl Surface Sci. 2023;614:156225. doi: 10.1016/j.apsusc.2022.156225
  • Alhaddad M, Navarro RM, Hussein MA, et al. Bi2O3/g-C3N4 nanocomposites as proficient photocatalysts for hydrogen generation from aqueous glycerol solutions beneath visible light. Ceram Int. 2020;46(16):24873–24881. doi: 10.1016/j.ceramint.2020.06.271
  • Liu C, Wu QS, Ji MW, et al. Constructing Z-scheme charge separation in 2D layered porous BiOBr/graphitic C3N4 nanosheets nanojunction with enhanced photocatalytic activity. J Alloys Compd. 2017;723:1121–1131. doi: 10.1016/j.jallcom.2017.07.003
  • Li J, Wu X, Wan Z, et al. Full spectrum light driven photocatalytic in-situ epitaxy of one-unit-cell Bi2O2CO3 layers on Bi2O4 nanocrystals for highly efficient photocatalysis and mechanism unveiling, Appl. Catal , B: Environ. 2019;243:667–677. doi: 10.1016/j.apcatb.2018.10.067
  • Rogozea EA, Petcu AR, Olteanu NL, et al. Tandem adsorption-photodegradation activity induced by light on NiO-ZnO p–n couple modified silica nanomaterials, Mater. Sci Semicond Process. 2017;57:1–11. doi: 10.1016/j.mssp.2016.10.006
  • Nazarkovsky MA, Bogatyrov VM, Czech B, et al. Synthesis and properties of zinc oxide photocatalyst by high-temperature processing of resorcinol-formaldehyde/zinc acetate mixture. J Photochem Photobio A Chem. 2017;334:36–46. doi: 10.1016/j.jphotochem.2016.10.040

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.