95
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Auto-combustion synthesis of lanthanum-doped TiO2 nanostructures for efficient photocatalytic degradation of crystal violet dye

ORCID Icon, , &
Received 28 Oct 2023, Accepted 31 Dec 2023, Published online: 25 Jan 2024

References

  • Mohsen M, Gomaa E, Mazaid NA, et al. Synthesis and characterization of organic montmorillonite-polyvinyl alcohol-co-polyacrylic nanocomposite hydrogel for heavy metal uptake in water. AIMS Mater Sci. 2017;4(5):1122–1139. doi:10.3934/matersci.2017.5.1122
  • Gao Q, Xu J, Bu X-H. Recent advances about metal–organic frameworks in the removal of pollutants from wastewater. Coord Chem Rev. 2019;378:17–31. doi. doi: 10.1016/j.ccr.2018.03.015
  • Kader S, Al-Mamun MR, Suhan MBK, et al. Enhanced photodegradation of methyl orange dye under UV irradiation using MoO3 and Ag doped TiO2 photocatalysts. Environ Technol Innov. 2022;27:102476. doi:10.1016/j.eti.2022.102476
  • Anila Ajmala HI, Majeedb I, Naseem Malika R. RSC advances. J. Pharm. Negat. Results. 2014;13(7):5480–5490.
  • Tamimi M, Qourzal S, Barka N, et al. Methomyl degradation in aqueous solutions by Fenton’s reagent and the photo-Fenton system. Sep Purif Technol. 2008;61(1):103–108. doi: 10.1016/j.seppur.2007.09.017
  • Sathishkumar P, Anandan S, Maruthamuthu P, et al. Synthesis of Fe3+ doped TiO2 photocatalysts for the visible assisted degradation of an azo dye. Colloids Surf A Physicochem Eng Asp. 2011;375(1):231–236. doi:10.1016/j.colsurfa.2010.12.022
  • Akhoondi A, Mirzaei M, Nassar MY, et al. New strategies in the preparation of binary g-C3N4/MXene composites for visible-light-driven photocatalytic applications. Synth Sinter. 2022 Dec;2(4 SE–Articles):151–169. doi: 10.53063/synsint.2022.24121
  • Panda D, Manickam S. Recent advancements in the sonophotocatalysis (SPC) and doped-sonophotocatalysis (DSPC) for the treatment of recalcitrant hazardous organic water pollutants. Ultrason Sonochem. 2017;36:481–496. doi: 10.1016/j.ultsonch.2016.12.022
  • Bhuvaneswari K, Bharathi RD, Pazhanivel T. Silk fibroin linked Zn/Cd-doped SnO2 nanoparticles to purify the organically polluted water. Mater Res Express. 2018;5(2):24004. doi:10.1088/2053-1591/aaaa35
  • Yates HM, Nolan MG, Sheel DW, et al. The role of nitrogen doping on the development of visible light-induced photocatalytic activity in thin TiO2 films grown on glass by chemical vapour deposition. J Photochem Photobiol A Chem. 2006;179(1–2):213–223. doi: 10.1016/j.jphotochem.2005.08.018
  • Li Y, Zhao H, Yang M. TiO2 nanoparticles supported on PMMA nanofibers for photocatalytic degradation of methyl orange. J Colloid Interface Sci. 2017;508:500–507. doi: 10.1016/j.jcis.2017.08.076
  • Yang LY, Dong SY, Sun JH, et al. Microwave-assisted preparation, characterization and photocatalytic properties of a dumbbell-shaped ZnO photocatalyst. J Hazard Mater. 2010;179(1–3):438–443. doi: 10.1016/j.jhazmat.2010.03.023
  • Radev L, Pavlova L, Samuneva B, et al. Sol-gel synthesis and structure of La2O3-CoO-SiO2 powders. Process Appl Ceram. 2008;2(2):103–108. doi: 10.2298/pac0802103r
  • Chang X, Sun S, Zhou Y, et al. Solvothermal synthesis of Ce-doped tungsten oxide nanostructures as visible-light-driven photocatalysts. Nanotechnology. 2011;22(26):265603. doi: 10.1088/0957-4484/22/26/265603
  • Kim SP, Choi MY, Choi HC. Photocatalytic activity of SnO2 nanoparticles in methylene blue degradation. Mater Res Bull. 2016;74:85–89. doi: 10.1016/j.materresbull.2015.10.024
  • Said M, Hariani PL, Apriani I, “Solution combustion method to synthesize magnetic Fe3O4 as photocatalytic of Congo red dye and antibacterial activity,” In IOP Conference Series: Earth and Environmental Science, Bankga Belitung, Indonisia. IOP Publishing; 2012, p. 12050.
  • Nguyen CH, Fu C-C, Juang R-S. Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: efficiency and degradation pathways. J Clean Prod. 2018;202:413–427. doi:10.1016/j.jclepro.2018.08.110
  • Lopera AA, Chavarriaga EA, Estupiñan HA, et al. Synthesis and spectroscopic characterization of nanoparticles of TiO2 doped with Pt produced via the self-combustion route. J Phys D Appl Phys. 2016;49(20):205501. doi: 10.1088/0022-3727/49/20/205501
  • Kaur S, Singh V. TiO2 mediated photocatalytic degradation studies of reactive red 198 by UV irradiation. J Hazard Mater. 2007;141(1):230–236. doi:10.1016/j.jhazmat.2006.06.123
  • Fan X, Chen X, Zhu S, et al. The structural, physical and photocatalytic properties of the mesoporous cr-doped TiO2. J Mol Catal A Chem. 2008;284(1–2):155–160. doi: 10.1016/j.molcata.2008.01.005
  • Zhang H, Zhu H. Preparation of Fe-doped TiO2 nanoparticles immobilized on polyamide fabric. Appl Surf Sci. 2012;258(24):10034–10041. doi:10.1016/j.apsusc.2012.06.069
  • Tseng YH, Kuo CH. Photocatalytic degradation of dye and NOx using visible-light-responsive carbon-containing TiO2. Catal Today. 2011;174(1):114–120. doi: 10.1016/j.cattod.2011.02.011
  • Rajoriya S, Bargole S, George S, et al. Synthesis and characterization of samarium and nitrogen doped TiO2 photocatalysts for photo-degradation of 4-acetamidophenol in combination with hydrodynamic and acoustic cavitation. 2019 Sep Purif Technol. 2018;209(April):254–269. doi: 10.1016/j.seppur.2018.07.036
  • Patil SB, Basavarajappa PS, Ganganagappa N, et al. Recent advances in non-metals-doped TiO2 nanostructured photocatalysts for visible-light driven hydrogen production, CO2 reduction and air purification. Int J Hydrogen Energy. 2019;44(26):13022–13039. doi:10.1016/j.ijhydene.2019.03.164
  • Ni M, Leung MKH, Leung DYC, et al. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable Sustainable Energy Rev. 2007;11(3):401–425. doi: 10.1016/j.rser.2005.01.009
  • Umar K, Haque MM, Muneer M, et al. Mo, mn and la doped TiO2: synthesis, characterization and photocatalytic activity for the decolourization of three different chromophoric dyes. J Alloys Compd. 2013;578:431–438. doi: 10.1016/j.jallcom.2013.06.083
  • Nassar MY, NourEldien MS, Ibrahim IM, et al. A facile hydrothermal synthesis of S-VO2-Cellulose nanocomposite for photocatalytic degradation of methylene blue dye. Processes. 2023;11(5):1322. doi:10.3390/pr11051322
  • El-Berry MF, Sadeek SA, Abdalla AM, et al. Microwave-assisted fabrication of copper nanoparticles utilizing different counter ions: an efficient photocatalyst for photocatalytic degradation of safranin dye from aqueous media. Mater Res Bull. 2021;133:111048. doi: 10.1016/j.materresbull.2020.111048
  • Aljohani MM, Masoud EM, Mohamed NM, et al. Cobalt aluminate/carbon nanocomposite via an auto-combustion method: an efficient photocatalyst for photocatalytic degradation of organic dyes from aqueous media. Int J Environ Anal Chem. 2021;103(19):7979–7999. doi: 10.1080/03067319.2021.1979533
  • Jahin HS, Kandil MI, Nassar MY. Facile auto-combustion synthesis of calcium aluminate nanoparticles for efficient removal of Ni (II) and as (III) ions from wastewater. Environ Technol. 2023;44(17):2581–2596. doi:10.1080/09593330.2022.2036248
  • Devi LG, Kumar SG, Murthy BN, et al. Influence of Mn2+ and Mo6+ dopants on the phase transformations of TiO2 lattice and its photo catalytic activity under solar illumination. Catal Commun. 2009;10(6):794–798. doi:10.1016/j.catcom.2008.11.041
  • Tu YF, Huang SY, Sang JP, et al. Preparation of Fe-doped TiO2 nanotube arrays and their photocatalytic activities under visible light. Mater Res Bull. 2010;45(2):224–229. doi: 10.1016/j.materresbull.2009.08.020
  • Liqiang J, Xiaojun S, Baifu X, et al. The preparation and characterization of la doped TiO2 nanoparticles and their photocatalytic activity. J Solid State Chem. 2004;177(10):3375–3382. doi: 10.1016/j.jssc.2004.05.064
  • Han M, Dong Z, Liu J, et al. The role of lanthanum in improving the visible-light photocatalytic activity of TiO 2 nanoparticles prepared by hydrothermal method. Appl Phys A. 2020;126(12):1–10. doi: 10.1007/s00339-020-04135-8
  • Sahoo C, Gupta AK, Pal A. Photocatalytic degradation of crystal violet (CI basic violet 3) on silver ion doped TiO2. Dye Pigment. 2005;66(3):189–196. doi:10.1016/j.dyepig.2004.09.003
  • Zhang Y, Li Q. Synthesis and characterization of fe-doped TiO2 films by electrophoretic method and its photocatalytic activity toward methyl orange. Solid State Sci. 2013;16:16–20. doi:10.1016/j.solidstatesciences.2012.11.012
  • Zulkifli RC, Razali MH, Azaman F, et al. “Synthesis and characterization of Al-fe-cu tri-doped TiO2 by in-situ hydrothermal for degradation of methylene blue dyes,” In IOP Conference Series: Materials Science and Engineering, Terenngganu, Malaysia. IOP Publishing, 2018, p. 12019.
  • Nassar MY, Mohamed TY, Ahmed IS, et al. MgO nanostructure via a sol-gel combustion synthesis method using different fuels: an efficient nano-adsorbent for the removal of some anionic textile dyes. J Mol Liq. 2017;225:730–740. doi: 10.1016/j.molliq.2016.10.135
  • Solís-Casados DA, Escobar-Alarcón L, Gómez-Oliván LM, et al. Photodegradation of pharmaceutical drugs using Sn-modified TiO2 powders under visible light irradiation. Fuel. 2017;198:3–10. doi:10.1016/j.fuel.2017.01.059
  • Tripathi AK, Mathpal MC, Kumar P, et al. Structural, optical and photoconductivity of sn and mn doped TiO2 nanoparticles. J Alloys Compd. 2015;622:37–47. doi:10.1016/j.jallcom.2014.09.218
  • Zhu J, Zhang J, Chen F, et al. High activity TiO 2 photocatalysts prepared by a modified sol–gel method: characterization and their photocatalytic activity for the degradation of XRG and X-GL. Top Catal. 2005;35(3–4):261–268. doi: 10.1007/s11244-005-3833-1
  • Mahlambi MM, Mishra AK, Mishra SB, et al. Comparison of rhodamine B degradation under UV irradiation by two phases of titania nano-photocatalyst. J Therm Anal Calorim. 2012;110(2):847–855. doi:10.1007/s10973-011-1852-7
  • Umar K, Aris A, Ahmad H, et al. Synthesis of visible light active doped TiO2 for the degradation of organic pollutants—methylene blue and glyphosate. J Anal Sci Technol. 2016;7(1). doi: 10.1186/s40543-016-0109-2
  • Guan W, Ji F, Xie Z, et al. Preparation and photocatalytic performance of nano-TiO2 codoped with iron III and lanthanum III. J Nanomater. 2015;2015(1):1–13. doi: 10.1155/2015/869821
  • Ho C-C, Kang F, Chang G-M, et al. Application of recycled lanthanum-doped TiO2 immobilized on commercial air filter for visible-light photocatalytic degradation of acetone and NO. Appl Surf Sci. 2019;465:31–40. doi:10.1016/j.apsusc.2018.09.136
  • Peng T, Zhao D, Song H, et al. Preparation of lanthana-doped titania nanoparticles with anatase mesoporous walls and high photocatalytic activity. J Mol Catal A Chem. 2005;238(1–2):119–126. doi:10.1016/j.molcata.2005.04.066
  • Nie J, Mo Y, Zheng B, et al. Electrochemical fabrication of lanthanum-doped TiO2 nanotube array electrode and investigation of its photoelectrochemical capability. Electrochim Acta. 2013;90:589–596. doi: 10.1016/j.electacta.2012.12.049
  • Kabir H, Nandyala SH, Rahman MM, et al. Influence of calcination on the sol–gel synthesis of lanthanum oxide nanoparticles. Appl Phys A: Mater Sci Process. 2018;124(12):1–11. doi: 10.1007/s00339-018-2246-5
  • Liang C, Li C, Zhu Y, et al. Recent advances of photocatalytic degradation for BTEX: materials, operation, and mechanism. Chem Eng J. 2023;455:140461. doi: 10.1016/j.cej.2022.140461

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.