0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The impact of zinc ions on electrode material for energy storage in solvothermal-synthesised graphene-zinc oxide nanocomposites

, , , , , & ORCID Icon show all
Received 15 May 2024, Accepted 28 Jul 2024, Published online: 08 Aug 2024

References

  • Hosseinkhani O, Hamzehlouy A, Dan S, et al. Graphene oxide/ZnO nanocomposites for efficient removal of heavy metal and organic contaminants from water. Arab J Chem. 2023;16(10):105176. doi: 10.1016/j.arabjc.2023.105176
  • Liu H, Xiang M, Shao X. Graphene/ZnO nanocomposite with seamless interface renders photoluminescence quenching and photocatalytic activity enhancement. J Mater Sci. 2018;53(19):13924–13935. doi: 10.1007/s10853-018-2605-9
  • Venkidusamy V, Nallusamy S, Nammalvar G, et al. ZnO/Graphene composite from solvent-exfoliated few-layer graphene nanosheets for photocatalytic dye degradation under sunlight irradiation. Micromachines. 2023;14(1):189. doi: 10.3390/mi14010189
  • Dar RA, Naikoo GA, Srivastava AK, et al. Performance of graphene-zinc oxide nanocomposite coated-glassy carbon electrode in the sensitive determination of para-nitrophenol. Sci Rep. 2022;12(1):1–14. doi: 10.1038/s41598-021-03495-2
  • Gomez-Alvarez MA, Morales C, Méndez J, et al. A comparative study of the ZnO growth on graphene and graphene oxide: the role of the initial oxidation state of carbon. C — J Carbon Res. 2020;6(2):41. doi: 10.3390/c6020041
  • Ding J, Wang M, Deng J, et al. A comparison study between ZnO nanorods coated with graphene oxide and reduced graphene oxide. J Alloys Compd. 2014;582:29–32. doi: 10.1016/j.jallcom.2013.07.197
  • Ta HQ, Zhao L, Pohl D, et al. Graphene-like ZnO: A mini review. Crystals. 2016;6(8):100–117. doi: 10.3390/cryst6080100
  • Okechukwua EO, Ikhioya IL, Ekpunobi AJ. Investigating the influence of precursor temperature on the bandgap energy, structural, and morphological features of Ti-doped barium sulphide material for photovoltaic application. 2024.
  • Ojegu EO, Ikhioya IL. Electrochemically deposited iron sulphide material by adjusting the deposition time for photovoltaic application. 2024.
  • Ikhioya IL, Ali NZ, Tahir S, et al. Electrochemical engineering of ZIF-7 electrode using ion beam technology for better supercapacitor performance. J Energy Storage. 2024;90(PA):111833. doi: 10.1016/j.est.2024.111833
  • Manohar A, Vijayakanth V, Vattikuti SVP, et al. A brief review on Zn - based materials and nanocomposites for supercapacitor applications. J Energy Storage. 2023;68:107674. doi: 10.1016/j.est.2023.107674
  • Saranya M, Ramachandran R, Wang F. Graphene-zinc oxide (G-ZnO) nanocomposite for electrochemical supercapacitor applications. J Sci Adv Mater Devices. 2016;1(4):454–460. doi: 10.1016/j.jsamd.2016.10.001
  • Sarwar SG, Ikhioya IL, Afzal S, et al. Supercapitance performance evaluation of MXene/Graphene/NiO composite electrode via in situ precipitation technique. Hybrid Adv. 2023;4:100105. doi: 10.1016/j.hybadv.2023.100105
  • Rehman AU, Munir T, Afzal S, et al. Enhanced Solar Cell Efficiency with Tin-Based Lead-Free Material (FASnI3) through SCAPS-1D Modeling. Eurasian J Sci Technol. 2024;4(3):244–252. doi: 10.48309/ejst.2024.429200.1118
  • Ikhioya IL, Nkele AC. Green synthesis and characterization of aluminum oxide nanoparticle using neem leaf extract (Azadirachta Indica). Hybrid Adv. 2024;5(November 2023):100141. doi: 10.1016/j.hybadv.2024.100141
  • Ikhioya IL, Iduoku K, Erickson ME. Enhanced structural, morphological and optical features of Ti. ACS Mater Au. 2024;4(2):195–203. doi: 10.1021/acsmaterialsau.3c00079
  • Kumar P, Sharma V, Kumar A, et al. Structural, morphological and vibrational properties of Fe2O3 nanoparticles. 2016;2(1):163–163. doi: 10.3850/978-981-09-7519-7nbl16-rps-163
  • Nnannaa LA, Jospeh U, Nwaokorongwu EC, et al. Impact of annealing temperature on praseodymium cerium telluride nanoparticles synthesise via hydrothermal approach for optoelectronic application. Mater Res Innov. 2024;(00):1–11. doi: 10.1080/14328917.2024.2320982
  • Tite T, Chiticaru EA, Burns JS, et al. Impact of nano-morphology, lattice defects and conductivity on the performance of graphene based electrochemical biosensors. J Nanobiotechnology. 2019;17(1):1–23. doi: 10.1186/s12951-019-0535-6
  • Ke Q, Wang J. Graphene-based materials for supercapacitor electrodes – a review. J Mater. 2016;2(1):37–54. doi: 10.1016/j.jmat.2016.01.001
  • Luo J, Jang HD, Huang J. Effect of sheet morphology on the scalability of graphene-based ultracapacitors. ACS Nano. 2013;7(2):1464–1471. doi: 10.1021/nn3052378
  • Das A, Nikhil SK, Nair RG. Influence of surface morphology on photocatalytic performance of zinc oxide: a review. Nano-Struct Nano-Objects. 2019;19:100353. doi: 10.1016/j.nanoso.2019.100353
  • Ghannam H, Silva JPB, Chahboun A. Effect of ZnO surface morphology on its electrochemical performance. RSC Adv. 2021;11(38):23346–23354. doi: 10.1039/d1ra03653j
  • Guo D, Ju Y, Fu C, et al. (0 0 2)-oriented growth and morphologies of ZnO thin films prepared by sol-gel method. Mater Sci Pol. 2016;34(3):555–563. doi: 10.1515/msp-2016-0076
  • Bramhaiah K, Singh VN, John NS. Hybrid materials of ZnO nanostructures with reduced graphene oxide and gold nanoparticles:. Phys Chem Phys. 2015;(December). doi: 10.1039/C5CP05081B
  • Rufus I, Peter A, Aisida SO, et al. Results in optics influence of manganese molarity incorporation on manganese silver sulphide semiconductor material for photovoltaic applications. Results Opt. 2023;12(February):100464. doi: 10.1016/j.rio.2023.100464
  • Samuel SO, Lagbegha-Ebi MF, Ogherohwo EP, et al. Improve physical properties of zirconium doped strontium sulphide for optoelectronic purpose. Results Opt. 2023;13(June):100518. doi: 10.1016/j.rio.2023.100518
  • Shah H, Afzal S, Usman M, et al. Impact of annealing temperature on lanthanum erbium telluride (La0.1Er0.2Te0.2) nanoparticles synthesized via hydrothermal approach. Adv J Chem Sect A. 2023;6(4):342–351. doi: 10.22034/AJCA.2023.407424.1386
  • Udofia KI, Ikhioya IL, Okoli DN, et al. Impact of doping on the physical properties of PbSe chalcogenide material for photovoltaic application. Asian J Nanosci Mater. 2023;6(2):135–147. doi: 10.26655/AJNANOMAT.2023.2.3
  • Udofia KI, Ikhioya IL, Okoli DN, et al. Asian journal of nanoscience and original research article impact of doping on the physical properties of PbSe chalcogenide material for photovoltaic application. 2023;2:135–147. doi: 10.26655/AJNANOMAT.2023.2.3
  • Ikhioya IL, Ugwuoke CO, Ochai-Ejeh FU, et al. Optimisation of temperature regulator on spray pyrolysis cobalt selenide doped erbium (CoSe : Er) semiconductor material for photovoltaic application. Mater Res Innov. 2023;28(1):1–8. doi: 10.1080/14328917.2023.2213493
  • Ikhioya IL, Nkele AC. Results in optics a novel synthesis of hydrothermally-prepared yttrium selenide and erbium selenide nanomaterials doped with magnesium. Results Opt. 2023;13(September):100555. doi: 10.1016/j.rio.2023.100555
  • Ikhioya IL, Nkele AC. Results in optics properties of electrochemically-deposited NiTe films doped with molybdenum at varying temperatures. Results Opt. 2023;12(April):100494. doi: 10.1016/j.rio.2023.100494
  • Ikhioya IL, Aisida SO, Ahmad I, et al. The effect of molybdenum dopant on rare earth metal chalcogenide material. Chem Phys Impact. 2023;7(April):100269. doi: 10.1016/j.chphi.2023.100269
  • Ikhioya IL, Onoh EU, Okoli DN, et al. Impact of bismuth as dopant on ZnSe material syntheses for photovoltaic application. Mater Res Innov. 2023;1–9. doi: 10.1080/14328917.2023.2180582
  • Salem M, Akir S, Massoudi I, et al. Photoelectrochemical and optical properties tuning of graphene-ZnO nanocomposites. J Alloys Compd. 2018;767:982–987. doi: 10.1016/j.jallcom.2018.07.202
  • Alamdari S, Ghamsari MS, Afarideh H, et al. Preparation and characterization of GO-ZnO nanocomposite for UV detection application. Opt Mater (Amst). 2019;92:243–250. doi: 10.1016/j.optmat.2019.04.041
  • Abbasi HY, Habib A, Tanveer M. Synthesis and characterization of nanostructures of ZnO and ZnO/Graphene composites for the application in hybrid solar cells. J Alloys Compd. 2017;690:21–26. doi: 10.1016/j.jallcom.2016.08.161
  • Puneetha J, Kottam N, Rathna A. Investigation of photocatalytic degradation of crystal violet and its correlation with bandgap in ZnO and ZnO/GO nanohybrid. Inorg Chem Commun. 2021;125:108460. doi: 10.1016/j.inoche.2021.108460
  • Mututu V, Sunitha AK, Thomas R, et al. An investigation on structural, electrical and optical properties of GO/ZnO nanocomposite. Int J Electrochem Sci. 2019;14(4):3752–3763. doi: 10.20964/2019.04.49
  • Boukhoubza I, Khenfouch M, Achehboune M, et al. Graphene oxide coated flower-shaped ZnO nanorods: optoelectronic properties. J Alloys Compd. 2020;831:154874. doi: 10.1016/j.jallcom.2020.154874
  • Mututu V, Sunitha AK, Thomas R, et al. “An investigation on structural, electrical and optical properties of GO/ZnO nanocomposite,” Int J Electrochem Sci. 2019;14(4):3752–3763. doi: 10.20964/2019.04.49
  • Naghani ME, Neghabi M, Zadsar M, et al. Synthesis and characterization of linear/nonlinear optical properties of graphene oxide and reduced graphene oxide ‑ based zinc oxide nanocomposite. Sci Rep. 2023;13(1):1–10. doi: 10.1038/s41598-023-28307-7
  • Murthy KRS, Raghu GK, Binnal P. Zinc Oxide Nanostructured Material for Sensor Application. J Biotechnol Bioeng. 2021;5(1):25–29. doi: 10.22259/2637-5362.0501004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.