185
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Application of artificial neural network in predicting the wear rate of copper surface composites produced using friction stir processing

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1079-1090 | Received 12 Mar 2020, Accepted 07 May 2020, Published online: 31 May 2020

References

  • Abidoye, L. K., F. M. Mahdi, M. O. Idris, O. O. Alabi, and A. A. Wahab. 2018. “ANN-derived Equation and ITS Application in the Prediction of Dielectric Properties of Pure and Impure CO2.” Journal of Cleaner Production 175: 123–132. doi:10.1016/j.jclepro.2017.12.013.
  • Asadi, P., G. Faraji, and M. K. Besharati. 2010. “Producing of AZ91/SiC Composite by Friction Stir Processing (FSP).” The International Journal, Advanced Manufacturing Technology 51: 247–260. doi:10.1007/s00170-010-2600-z.
  • Ashan, S. K., N. Ziaeifar, and R. Khalilnezhad. 2018. “Artificial Neural Network Modelling of Cr(VI) Surface Adsorption with NiO Nanoparticles Using the Results Obtained from Optimization of Response Surface Methodology.” Neural Computing & Applications 29: 969–979. doi:10.1007/s00521-017-3172-8.
  • Aydin, G., I. Karakurt, and C. Hamzacebi. 2014. “Artificial Neural Network and Regression Models for Performance Predicti on of Abrasive Waterjet in Rock Cutting.” The International Journal, Advanced Manufacturing Technology 75: 1321–1330. doi:10.1007/s00170-014-6211-y.
  • Azizieh, M., A. H. Kokabi, and P. Abachi. 2011. “Effect of Rotational Speed and Probe Profile on Microstructure and Hardness of AZ31/Al2O3 Nanocomposites Fabricated by Friction Stir Processing.” Materials & Design 32: 2034–2041. doi:10.1016/j.matdes.2010.11.055.
  • Barmouz, M., P. Asadi, M. K. B. Givi, and M. Taherishargh. 2011. “Investigation of Mechanical Properties of Cu/SiC Composite Fabricated by FSP: Effect of SiC Particles Size and Volume Fraction.” Materials Science and Engineering: A 528: 1740–1749. doi:10.1016/j.msea.2010.11.006.
  • Barmouz, M., and M. K. B. Givi. 2011. “Fabrication of in Situ Cu/SiC Composites Using Multi-pass Friction Stir Processing: Evaluation of Microstructural, Porosity, Mechanical and Electrical Behavior.” Composites Part A: Applied Science and Manufacturing 42: 1445–1453. doi:10.1016/j.compositesa.2011.06.010.
  • Barmouz, M., M. K. B. Givi, and J. Jafari. 2011. “Influence of Tool Pin Profile on the Microstructure and Mechanical Behavior of Cu/SiC Metal Matrix Composites Produced by Friction Stir Processing.” Advanced Materials Research 154–155: 1761–1766.
  • Barmouz, M., M. K. B. Givi, and J. Seyfi. 2011. “On the Role of Processing Parameters in Producing Cu/SiC Metal Matrix Composites via Friction Stir Processing: Investigating Microstructure, Microhardness, Wear and Tensile Behavior.” Materials Characterization 62: 108–117. doi:10.1016/j.matchar.2010.11.005.
  • Cavaliere, P., and P. P. D. Marco. 2007. “Superplastic Behaviour of Friction Stir Processed AZ91 Magnesium Alloy Produced by High Pressure Die Cast.” Journal of Materials Processing Technology 184: 77–83. doi:10.1016/j.jmatprotec.2006.11.005.
  • Chen, Y., R. Sun, Y. Gao, and J. Leopold. 2017. “A nested-ANN Prediction Model for Surface Roughness considering the Effects of Cutting Forces and Tool Vibrations.” Measurement 98: 25–34. doi:10.1016/j.measurement.2016.11.027.
  • Dewangan, S., and S. Chattopadhyaya. 2016. “Characterization of Wear Mechanisms in Distorted Conical Picks after Coal Cutting.” Rock Mechanics and Rock Engineering 49: 225–242. doi:10.1007/s00603-015-0726-x.
  • Dhokey, N. B., and R. K. Paretkar. 2008. “Study of Wear Mechanisms in Copper-based SiCp (20% by Volume) Reinforced Composite.” Wear 265: 117–133. doi:10.1016/j.wear.2007.09.001.
  • Dinaharan, I., and N. Murugan. 2012. “Optimization of Friction Stir Welding Process to Maximize Tensile Strength of AA6061/ZrB2 In-situ Composite Butt Joints.” Metals and Materials International 18: 135–142. doi:10.1007/s12540-012-0016-z.
  • Gandra, J., R. M. Miranda, and P. Vilaca. 2011. “Effect of Overlapping Direction in Multi Pass Friction Stir Processing.” Materials Science and Engineering: A 528: 5592–5599. doi:10.1016/j.msea.2011.03.105.
  • Gopalakrishnan, S., and N. Murugan. 2011. “Prediction of Tensile Strength of Friction Stir Welded Aluminium Matrix TiCp Particulate Reinforced Composite.” Materials & Design 32: 462–467. doi:10.1016/j.matdes.2010.05.055.
  • Hassan, A. K. F., L. S. Mohammed, and H. J. Abdulsamad. 2018. “Experimental and Artificial Neural Network ANN Investigation of Bending Fatigue Behavior of Glass Fiber/polyester Composite Shafts.” Journal of the Brazilian Society of Mechanical Sciences and Engineering 40: 201. doi:10.1007/s40430-018-1098-4.
  • Karazi, S. M., A. Issa, and D. Brabazon. 2009. “Comparison of ANN and DoE for the Prediction of Laser-machined Micro-channel Dimensions.” Optics and Lasers in Engineering 47: 956–964. doi:10.1016/j.optlaseng.2009.04.009.
  • Ke, L., C. Huang, L. Xing, and K. Huang. 2010. “Al–Ni Intermetallic Composites Produced in Situ by Friction Stir Processing.” Journal of Alloys and Compounds 503: 494–499. doi:10.1016/j.jallcom.2010.05.040.
  • Ma, Z. Y. 2008. “Friction Stir Processing Technology: A Review.” Metallurgical and Materials Transactions A 39: 642–658. doi:10.1007/s11661-007-9459-0.
  • Mahmoud, E. R. I., K. Ikeuchi, and M. Takahashi. 2008. “Fabrication of SiC Particle Reinforced Composite on Aluminium Surface by Friction Stir Processing.” Science and Technology of Welding and Joining 13: 607–618. doi:10.1179/136217108X333327.
  • Mazaheri, Y., F. Karimzadeh, and M. H. Enayati. 2011. “A Novel Technique for Development of A356/Al2O3 Surface Nanocomposite by Friction Stir Processing.” Journal of Materials Processing Technology 211: 1614–1619. doi:10.1016/j.jmatprotec.2011.04.015.
  • Mohd Zain, A., and H. Haron. 2010. “Sharif S Simulated Annealing to Estimate the Optimal Cutting Conditions for Minimizing Surface Roughness in End Milling Ti-6Al-4V.” Machining Science and Technology 14: 43–62. doi:10.1080/10910340903586558.
  • Mondal, N., S. Mandal, and M. C. Mandal. 2020. “FPA Based Optimization of Drilling Burr Using Regression Analysis and ANN Model.” Measurement 152: 107327. doi:10.1016/j.measurement.2019.107327.
  • Nahak, S., S. Dewangan, and S. Chattopadhyaya. 2015. “Discussion on Wear Phenomena in Cemented Carbide.” Procedia Earth and Planetary Science 11: 284–293. doi:10.1016/j.proeps.2015.06.063.
  • Palanivel, R., R. F. Laubscher, I. Dinaharan, and N. Murugan. 2016. “Tensile Strength Prediction of Dissimilar Friction Stir‑welded AA6351–AA5083 Using Artificial Neural Network Technique.” Journal of the Brazilian Society of Mechanical Sciences and Engineering 38: 1647–1657. doi:10.1007/s40430-015-0483-5.
  • Rajkumar, K., and S. Aravindan. 2011. “Tribological Studies on Microwave Sintered Copper–carbon Nanotube Composites.” Wear 270: 613–621. doi:10.1016/j.wear.2011.01.017.
  • Salekrostam, R., M. K. B. Givi, P. Asadi, and P. Bahemmat. 2010. “Influence of Friction Stir Processing Parameters on the Fabrication of SiC/316L Surface Composite.” Defect and Diffusion Forum 297–301: 221–226.
  • Shakeri, S., A. Ghassemi, M. Hassani, and A. Hajian. 2015. “Investigation of Material Removal Rate and Surface Roughness in Wire Electrical Discharge Machiningprocess for Cementation Alloy Steel Using Artificial Neural Network.” International Journal of Advanced Manufacturing Technology 549–557.
  • Shamsipura, A., S. F. K. Bozorg, and A. Z. Hanzakia. 2011. “The Effects of Friction-stir Process Parameters on the Fabrication of Ti/SiC Nano-composite Surface Layer.” Surface & Coatings Technology 206: 1372–1381. doi:10.1016/j.surfcoat.2011.08.065.
  • Sundaram, N. S., and N. Murugan. 2011. “Tensile Behavior of Dissimilar Friction Stir Welded Joints of Aluminium Alloys.” Materials & Design 31: 4184–4193. doi:10.1016/j.matdes.2010.04.035.
  • Wang, Z. H., D. Y. Gong, X. Li, G. T. Li, and D. H. Zhang. 2017. “Prediction of Bending Force in the Hot Strip Rolling Process Using Artificial Neural Network and Genetic Algorithm (ANN-GA).” The International Journal, Advanced Manufacturing Technology 93: 3325–3338. doi:10.1007/s00170-017-0711-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.