164
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Computational study on the potential of aluminium alloy as a candidate material in automotive leaf spring

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 406-417 | Received 20 Jun 2020, Accepted 21 Oct 2020, Published online: 16 Nov 2020

References

  • Al-Qureshi, H. A. 2001. “Automobile Leaf Springs from Composite Materials.” Journal of Materials Processing Technology 118 (1–3): 58–61. doi:10.1016/S0924-0136(01)00863-9.
  • Ali KA, Manuel DJ, Balamurugan M, Murugan MS. Analysis of composite leaf spring using ANSYS software. Materials Today: Proceedings, Article in Press, https://doi.org/10.1016/j.matpr.2020.08.068.
  • Ashwini, K., and P. C. V. Mohan. 2018. “ScienceDirect Design and Analysis of Leaf Spring Using Various Composites – An Overview.” Materials Today: Proceedings 5 (2): 5716–5721.
  • Becker, F., C. Hopmann, F. Italiano, and A. Girelli. 2019. “Fatigue Testing of GFRP Materials for the Application in Automotive Leaf Springs.” Procedia Structural Integrity 19: 645–654. doi:10.1016/j.prostr.2019.12.070.
  • Caneon, K., and A. K. Srivastav. 2018. “Geometrical Modelling and Analysis of Automotive Oxidation Catalysis System for Compliance with Environmental Emission Norms.” Nature Environment & Pollution Technology 17 (4): 1207–1212.
  • Chavhan, G. R., and L. N. Wankhade. 2020. “Experimental Analysis of E-glass Fiber/epoxy Composite-material Leaf Spring Used in Automotive.” Materials Today: Proceedings 26: 373–377.
  • Dutta, D. 2017. “Semi-active Suspension System of Car Model Design: A Comparative Study.” Australian Journal of Mechanical Engineering. 17 (1), 16 - 25. https://doi.org/10.1080/14484846.2017.1372029
  • Hou, J. P., J. Y. Cherruault, I. Nairne, G. Jeronimidis, and R. M. Mayer. 2007. “Evolution of the Eye-end Design of a Composite Leaf Spring for Heavy Axle Loads.” Composite Structures 78 (3): 351–358. doi:10.1016/j.compstruct.2005.10.008.
  • Ke, J., Z. Wu, X. Chen, and Z. Ying. 2019. “A Review on Material Selection, Design Method and Performance Investigation of Composite Leaf Springs.” Composite Structures 226 (928): 111277. doi:10.1016/j.compstruct.2019.111277.
  • Khatkar, V., and B. K. Behera. 2020. “Experimental Investigation of Composite Leaf Spring Reinforced with Various Fiber Architecture.” Advanced Composite Materials 29: 129–145. March 2. doi:10.1080/09243046.2019.1649952.
  • Khatkar, V., B. K. Behera, and R. N. Manjunath. 2020. “Textile Structural Composites for Automotive Leaf Spring Application.” Composites Part B: Engineering 182: 107662. doi:10.1016/j.compositesb.2019.107662.
  • Kretschmer, J. 1988. “Composites in Automotive Applications–state of the Art and Prospects.” Materials Science and Technology 4: 757–767. September 9. doi:10.1179/mst.1988.4.9.757.
  • Krishnamurthy, K., P. Ravichandran, A. Shahid Naufal, R. Pradeep, and K. M. Sai Harish Adithiya. 2020. “Modeling and Structural Analysis of Leaf Spring Using Composite Materials.” Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.07.346
  • Kumar, A. 2018. “ScienceDirect Design and Computational Analysis of Semi-Elliptical and Parabolic Leaf Spring.” Materials Today: Proceedings 5 (9): 19441–19455.
  • Kumar, P., and C. R. Matawale. 2020. “Analysis and Optimization of Mono Parabolic Leaf Spring Material Using ANSYS.” Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.06.605
  • Kurien, C., and A. K. Srivastava. 2019a. “Investigation on Gas Conversion Efficiency and Filtration Behaviour of Diesel Oxidation Catalysis System”. Australian Journal of Mechanical Engineering: 1–9. December. doi:10.1080/14484846.2019.1704491.
  • Kurien, C., and A. K. Srivastava. 2019b. “Review on Post-treatment Emission Control Technique by Application of Diesel Oxidation Catalysis and Diesel Particulate Filtration.” Journal of Thermal Engineering 5 (2): 108–118. doi:10.18186/thermal.532252.
  • Kurien, C., A. K. Srivastava, and E. Molere. 2020. “Emission Control Strategies for Automotive Engines with Scope for Deployment of Solar Based E‐vehicle Charging Infrastructure.” Environmental Progress & Sustainable Energy 39: 13267. January 1. doi:10.1002/ep.13267.
  • Kurien, C., A. K. Srivastava, N. Gandigudi, and K. Anand. 2020. “Soot Deposition Effects and Microwave Regeneration Modelling of Diesel Particulate Filtration System.” Journal of the Energy Institute 93: 463–473. April 2. doi:10.1016/j.joei.2019.07.005.
  • Mahanthi, D. L., and C. V. S. Murali. 2017. “Design and Analysis of Composite Leaf Spring for Light Weight Vehicle.” International Journal of Advanced Engineering Research and Science 4 (3): 147–152. doi:10.22161/ijaers.4.3.23.
  • Mohamed, M. F., and P. L. Madhavan. 2020. “Optimal Design of Leaf Springs Using Composite Materials.” International Journal of Research in Mechanical Engineering. April.
  • Nikam, M., and S. N. Teli. 2018. “Design and Material Optimization of Jeep Leaf Spring.” January.
  • Prawoto, Y., M. Ikeda, S. K. Manville, and A. Nishikawa. 2008. “Design and Failure Modes of Automotive Suspension Springs.” Engineering Failure Analysis 15 (8): 1155–1174. doi:10.1016/j.engfailanal.2007.11.003.
  • Qin, P., G. Dentel, and M. Mesh. 2002. “Multi-leaf Spring and Hotchkiss Suspension CAE Simulation.” ABAQUS Users’ Conference, 1–14.
  • Rajagopal, D., S. Varun, M. Manikanth, B. Somasai, and S. Kumar. 2014. “Automobile Leaf Spring from Composite Materials.” International Journal of Engineering and Advanced Technology4 (1): 16–18.
  • Rao, E. V. 2014. “Design and Material Optimization of Heavy Vehicle Leaf Spring.” International Journal of Research in Mechanical Engineering & Technology 4 (1): 80–88. January 2018.
  • “Rear Wheel Drive Arrangements.” [ Online]. Accessed 10 September 2020. https://what-when-how.com/automobile/rear-wheel-drive-arrangements-automobile/
  • Scuracchio, B. G., N. B. de Lima, and C. G. Schön. 2013. “Role of Residual Stresses Induced by Double Peening on Fatigue Durability of Automotive Leaf Springs.” Materials & Design 47: 672–676. doi:10.1016/j.matdes.2012.12.066.
  • “SFC-407-TT-bs4.pdf.” TATA Motors. [ Online]. Accessed 10 September 2020. https://light-trucks.tatamotors.com/pdf/SFC-407-TT-bs4.pdf
  • Song, C., Y. Zhao, L. Wang, and L. Niu. 2014. “Multi-objective Optimisation Design of Passive Suspension Parameters Based on Competition-cooperation Game Model.” Australian Journal of Mechanical Engineering 12 (1): 13–24. doi:10.7158/M12-064.2014.12.1.
  • Taub, A. I., and A. A. Luo. 2015. “Advanced Lightweight Materials and Manufacturing Processes for Automotive Applications.” MRS Bulletin 40 (12): 1045–1053. doi:10.1557/mrs.2015.268.
  • Wu, J., A. L. Guzzomi, and M. Hodkiewicz. 2014a. “A General Articulation Angle Stability Model for Non-slewing Articulated Mobile Cranes on Slopes.” Australian Journal of Mechanical Engineering 12 (1): 131–138. doi:10.7158/M12-109.2014.12.1.
  • Wu, J., A. L. Guzzomi, and M. Hodkiewicz. 2014b. “Static Stability Analysis of Non-slewing Articulated Mobile Cranes.” Australian Journal of Mechanical Engineering 12 (1): 60–76. doi:10.7158/M12-108.2014.12.1.
  • Yu, W. J., and H. C. Kim. 1988. “Double Tapered FRP Beam for Automotive Suspension Leaf Spring.” Composite Structures 9 (4): 279–300. doi:10.1016/0263-8223(88)90049-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.