199
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Bending, axial buckling and shear buckling analyses of FG-porous plates based on a refined plate theory

&
Pages 705-724 | Received 24 Oct 2020, Accepted 02 Apr 2021, Published online: 03 May 2021

References

  • Afshari, H. 2020a. “Effect of graphene nanoplatelet reinforcements on the dynamics of rotating truncated conical shells.” Journal of the Brazilian Society of Mechanical Sciences and Engineering 42 (10): 1–22. doi:10.1007/s40430-020-02599-6.
  • Afshari, H. 2020b. “Free vibration analysis of GNP-reinforced truncated conical shells with different boundary conditions.” Australian Journal of Mechanical Engineering 1–17. doi:10.1080/14484846.2020.1797340.
  • Afshari, H., and M. Irani Rahaghi. 2018. “Whirling analysis of multi-span multi-stepped rotating shafts.” Journal of the Brazilian Society of Mechanical Sciences and Engineering 40 (9): 424. doi:10.1007/s40430-018-1351-x.
  • Afshari, H., and K. Torabi. 2017. “A parametric study on flutter analysis of cantilevered trapezoidal FG sandwich plates.” AUT Journal of Mechanical Engineering 1 (2): 191–210.
  • Askari, M., A. Saidi, and A. Rezaei. 2017. “On natural frequencies of levy-type thick porous-cellular plates surrounded by piezoelectric layers.” Composite Structures 179: 340–354. doi:10.1016/j.compstruct.2017.07.073.
  • Babaei, M., M. H. Hajmohammad, and K. Asemi. 2020. “Natural frequency and dynamic analyses of functionally graded saturated porous annular sector plate and cylindrical panel based on 3D elasticity.” Aerospace Science and Technology 96: 105524. doi:10.1016/j.ast.2019.105524.
  • Bellman, R., B. Kashef, and J. Casti. 1972. “Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations.” Journal of Computational Physics 10 (1): 40–52. doi:10.1016/0021-9991(72)90089-7.
  • Bellman, R., and R. S. Roth. 1979. “Systems identification with partial information.” Journal of Mathematical Analysis and Applications 68 (2): 321–333. doi:10.1016/0022-247X(79)90120-3.
  • Bemani Khouzestani, L., and A. R. Khorshidvand. 2019. “Axisymmetric free vibration and stress analyses of saturated porous annular plates using generalized differential quadrature method.” Journal of Vibration and Control 25 (21–22): 2799–2818. doi:10.1177/1077546319871132.
  • Bert, C. W., and M. Malik (1996). “Differential quadrature method in computational mechanics: a review.”
  • Chen, D., J. Yang, and S. Kitipornchai. 2019. “Buckling and bending analyses of a novel functionally graded porous plate using Chebyshev-Ritz method.” Archives of Civil and Mechanical Engineering 19 (1): 157–170. doi:10.1016/j.acme.2018.09.004.
  • Chen, M., T. Ye, J. Zhang, G. Jin, Y. Zhang, Y. Xue, X. Ma, and Z. Liu. 2020. “Isogeometric three-dimensional vibration of variable thickness parallelogram plates with in-plane functionally graded porous materials.” International Journal of Mechanical Sciences 169: 105304. doi:10.1016/j.ijmecsci.2019.105304.
  • Cong, P. H., T. M. Chien, N. D. Khoa, and N. D. Duc. 2018. “Nonlinear thermomechanical buckling and post-buckling response of porous FGM Plates Using Reddy’s HSDT.” Aerospace Science and Technology 77: 419–428. doi:10.1016/j.ast.2018.03.020.
  • Demirhan, P. A., and V. Taskin. 2019. “Bending and free vibration analysis of levy-type porous functionally graded plate using state space approach.” Composites Part B: Engineering 160: 661–676. doi:10.1016/j.compositesb.2018.12.020.
  • Ebrahimi, F., A. Jafari, and M. R. Barati. 2017. “Free vibration analysis of smart porous plates subjected to various physical fields considering neutral surface position.” Arabian Journal for Science and Engineering 42 (5): 1865–1881. doi:10.1007/s13369-016-2348-3.
  • Gao, K., W. Gao, D. Chen, and J. Yang. 2018. “Nonlinear free vibration of functionally graded graphene platelets reinforced porous nanocomposite plates resting on elastic foundation.” Composite Structures 204: 831–846. doi:10.1016/j.compstruct.2018.08.013.
  • Ghorbanpour Arani, A., F. Kiani, and H. Afshari. 2019a. “Aeroelastic analysis of laminated FG-CNTRC cylindrical panels under yawed supersonic flow.” International Journal of Applied Mechanics. https://www.worldscientific.com/doi/abs/10.1142/S1758825119500522
  • Ghorbanpour Arani, A., F. Kiani, and H. Afshari. 2019b. “Free and forced vibration analysis of laminated functionally graded CNT-reinforced composite cylindrical panels.” Journal of Sandwich Structures & Materials 1099636219830787. https://journals.sagepub.com/doi/abs/10.1177/1099636219830787
  • Gupta, A., and M. Talha. 2018a. “Influence of initial geometric imperfections and porosity on the stability of functionally graded material plates.” Mechanics Based Design of Structures and Machines 46 (6): 693–711. doi:10.1080/15397734.2018.1449656.
  • Gupta, A., and M. Talha. 2018b. “Influence of porosity on the flexural and free vibration responses of functionally graded plates in thermal environment.” International Journal of Structural Stability and Dynamics 18 (1): 1850013. doi:10.1142/S021945541850013X.
  • Kamranfard, M., A. Saidi, and A. Naderi. 2018. “Analytical solution for vibration and buckling of annular sectorial porous plates under in-plane uniform compressive loading.” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 232 (12): 2211–2228.
  • Li, K., D. Wu, X. Chen, J. Cheng, Z. Liu, W. Gao, and M. Liu. 2018a. “Isogeometric analysis of functionally graded porous plates reinforced by graphene platelets.” Composite Structures 204: 114–130. doi:10.1016/j.compstruct.2018.07.059.
  • Li, Q., D. Wu, X. Chen, L. Liu, Y. Yu, and W. Gao. 2018b. “Nonlinear vibration and dynamic buckling analyses of sandwich functionally graded porous plate with graphene platelet reinforcement resting on winkler–pasternak elastic foundation.” International Journal of Mechanical Sciences 148: 596–610. doi:10.1016/j.ijmecsci.2018.09.020.
  • Mohammadimehr, M., H. Afshari, M. Salemi, K. Torabi, and M. Mehrabi. 2019. “Free vibration and buckling analyses of functionally graded annular thin sector plate in-plane loads using GDQM.” Structural Engineering and Mechanics 71 (5): 525–544.
  • Moradi-Dastjerdi, R., and K. Behdinan. 2020. “Stability analysis of multifunctional smart sandwich plates with graphene nanocomposite and porous layers.” International Journal of Mechanical Sciences 167: 105283. doi:10.1016/j.ijmecsci.2019.105283.
  • Nguyen, L. B., N. V. Nguyen, C. H. Thai, A. Ferreira, and H. Nguyen-Xuan. 2019a. “An isogeometric bézier finite element analysis for piezoelectric FG porous plates reinforced by graphene platelets.” Composite Structures 214: 227–245. doi:10.1016/j.compstruct.2019.01.077.
  • Nguyen, L. B., C. H. Thai, A. Zenkour, and H. Nguyen-Xuan. 2019b. “An isogeometric bézier finite element method for vibration analysis of functionally graded piezoelectric material porous plates.” International Journal of Mechanical Sciences 157: 165–183. doi:10.1016/j.ijmecsci.2019.04.017.
  • Panah, M., A. R. Khorshidvand, S. M. Khorsandijou, and M. Jabbari. 2019. “Pore pressure and porosity effects on bending and thermal postbuckling behavior of FG saturated porous circular plates.” Journal of Thermal Stresses 42 (9): 1083–1109. doi:10.1080/01495739.2019.1614502.
  • Phung-Van, P., C. H. Thai, A. Ferreira, and T. Rabczuk. 2020. “Isogeometric nonlinear transient analysis of porous FGM plates subjected to hygro-thermo-mechanical loads.” Thin-Walled Structures 148: 106497. doi:10.1016/j.tws.2019.106497.
  • Rezaei, A., and A. Saidi. 2015. “Exact solution for free vibration of thick rectangular plates made of porous materials.” Composite Structures 134: 1051–1060. doi:10.1016/j.compstruct.2015.08.125.
  • Sadd, M. H. 2009. Elasticity: Theory, Applications, and Numerics. Elsevier, Academic Press, Cambridge, Massachusetts: Academic Press.
  • Safaei, B., R. Moradi-Dastjerdi, K. Behdinan, and F. Chu. 2019. “Critical buckling temperature and force in porous sandwich plates with CNT-reinforced nanocomposite layers.” Aerospace Science and Technology 91: 175–185. doi:10.1016/j.ast.2019.05.020.
  • Sahmani, S., M. M. Aghdam, and T. Rabczuk. 2018. “Nonlocal strain gradient plate model for nonlinear large-amplitude vibrations of functionally graded Porous Micro/nano-plates reinforced with GPLs.” Composite Structures 198: 51–62. doi:10.1016/j.compstruct.2018.05.031.
  • Saidi, A. R., R. Bahaadini, and K. Majidi-Mozafari. 2019. “On vibration and stability analysis of porous plates reinforced by graphene platelets under aerodynamical loading.” Composites Part B: Engineering 164: 778–799. doi:10.1016/j.compositesb.2019.01.074.
  • Shojaeefard, M. H., H. S. Googarchin, M. Ghadiri, and M. Mahinzare. 2017. “Micro temperature-dependent fg porous plate: free vibration and thermal buckling analysis using modified couple stress theory with CPT and FSDT.” Applied Mathematical Modelling 50: 633–655. doi:10.1016/j.apm.2017.06.022.
  • Torabi, K., and H. Afshari. 2016. “Optimization for flutter boundaries of cantilevered trapezoidal thick plates.” Journal of the Brazilian Society of Mechanical Sciences and Engineering 39 (5): 1545–1561. doi:10.1007/s40430-016-0688-2.
  • Torabi, K., and H. Afshari. 2017. “Vibration analysis of a cantilevered trapezoidal moderately thick plate with variable thickness.” Engineering Solid Mechanics 5 (1): 71–92. doi:10.5267/j.esm.2016.7.001.
  • Wang, C., C. Zhang, and S. Chen. 2016. “The microscopic deformation mechanism of 3D graphene foam materials under uniaxial compression.” Carbon 109: 666–672. doi:10.1016/j.carbon.2016.08.084.
  • Wang, Y. Q., and Z. Y. Zhang. 2019. “Bending and buckling of three-dimensional graphene foam plates.” Results in Physics 13: 102136. doi:10.1016/j.rinp.2019.02.072.
  • Xiang, Y., H. Jiang, and J. Lu. 2017. “Analyses of dynamic characteristics of a fluid-filled thin rectangular porous plate with various boundary conditions.” Acta Mechanica Solida Sinica 30 (1): 87–97. doi:10.1016/j.camss.2016.12.002.
  • Xue, Y., G. Jin, X. Ma, H. Chen, T. Ye, M. Chen, and Y. Zhang. 2019. “Free vibration analysis of porous plates with porosity distributions in the thickness and in-plane directions using isogeometric approach.” International Journal of Mechanical Sciences 152: 346–362. doi:10.1016/j.ijmecsci.2019.01.004.
  • Yang, J., D. Chen, and S. Kitipornchai. 2018. “Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method.” Composite Structures 193: 281–294. doi:10.1016/j.compstruct.2018.03.090.
  • Yousefi, A. H., P. Memarzadeh, H. Afshari, and S. J. Hosseini. 2020. “Agglomeration effects on free vibration characteristics of three-phase CNT/polymer/fiber laminated truncated conical shells.” Thin-Walled Structures 157: 107077. doi:10.1016/j.tws.2020.107077.
  • Zhao, J., K. Choe, F. Xie, A. Wang, C. Shuai, and Q. Wang. 2018. “Three-dimensional exact solution for vibration analysis of thick Functionally Graded Porous (FGP) rectangular plates with arbitrary boundary conditions.” Composites Part B: Engineering 155: 369–381. doi:10.1016/j.compositesb.2018.09.001.
  • Zhao, J., F. Xie, A. Wang, C. Shuai, J. Tang, and Q. Wang. 2019. “Dynamics analysis of Functionally Graded Porous (FGP) circular, annular and sector plates with general elastic restraints.” Composites Part B: Engineering 159: 20–43. doi:10.1016/j.compositesb.2018.08.114.
  • Zhou, K., Z. Lin, X. Huang, and H. Hua. 2019. “Vibration and sound radiation analysis of temperature-dependent porous functionally graded material plates with general boundary conditions.” Applied Acoustics 154: 236–250. doi:10.1016/j.apacoust.2019.05.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.