115
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Parametric optimisation of supercritical CO2 thermal-hydraulic characteristics in micro-channels using response surface methodology

, , , , & ORCID Icon
Pages 894-910 | Received 28 Sep 2020, Accepted 14 Apr 2021, Published online: 29 Apr 2021

References

  • Abe, K., T. Kondoh, and Y. Nagano. 1994. “A New Turbulence Model for Predicting Fluid Flow and Heat Transfer in Separating and Reattaching flows-I. Flow Field Calculations.” International Journal of Heat and Mass Transfer 37 (1): 139–151. doi:10.1016/0017-9310(94)90168-6.
  • Abid, R. 1993. “Evaluation of Two-equation Turbulence Models for Predicting Transitional Flows.” International Journal of Engineering Science 31 (6): 831–840. doi:10.1016/0020-7225(93)90096-D.
  • Adams, M. A., E. O. Otu, M. Kozliner, J. Szubra, and J. Pawliszyn. 1995. “Portable Thermal Pump for Supercritical Fluid Delivery.” Analytical Chemistry 67(1): 212–219. [Online]. Available http://www.scopus.com/inward/record.url?eid=2-s2.0-0029220352&partnerID=40&md5=92a3f2d641a404116eb2a181e5bf15cd
  • Akbarzadeh, M., S. Rashidi, M. Bovand, and R. Ellahi, 2016. “A Sensitivity Analysis on Thermal and Pumping Power for the Flow of Nanofluid inside A Wavy Channel,” vol. 220, pp. 1–13.
  • Blackburn, J. M., D. P. Long, A. Cabañas, and J. J. Watkins. 2001. “Deposition of Conformal Copper and Nickel Films from Supercritical Carbon Dioxide.” Science 294 (5540): 141–145. doi:10.1126/science.1064148.
  • Campolongo, F., and R. Braddock. “The Use of Graph Theory in the Sensitivity Analysis of the Model Output: A Second Order Screening Method.” Reliability Engineering & System Safety 64 (1): 1–12. 10.1016/S0951-8320(98)00008-8. 4 1999.
  • Chang, K. C., W. D. Hsieh, and C. S. Chen. 1995, [Online]. Available. “Modified low-Reynolds-number Turbulence Model Applicable to Recirculating Flow in Pipe Expansion.” Journal of Fluids Engineering, Transactions of the ASME 117 (3): 417–423. http://www.scopus.com/inward/record.url?eid=2-s2.0-0029369252&partnerID=40&md5=6db9138d6d2bb8f1515fa5f2b33bccd6
  • Chatoorgoon, V. 2001. “Stability of Supercritical Fluid Flow in a Single-channel Natural-convection Loop.” International Journal of Heat and Mass Transfer 44 (10): 1963–1972. doi:10.1016/S0017-9310(00)00218-0.
  • Chatoorgoon, V. 2013. “Non-dimensional Parameters for Static Instability in Supercritical Heated Channels.” International Journal of Heat and Mass Transfer 64: 145–154. doi:10.1016/j.ijheatmasstransfer.2013.04.026.
  • Chen, L., and X. R. Zhang. 2014. “Experimental Analysis on a Novel Solar Collector System Achieved by Supercritical CO2 Natural Convection.” Energy Conversion and Management 77: 173–182. doi:10.1016/j.enconman.2013.08.059.
  • Chen, L., X. R. Zhang, J. Okajima, and S. Maruyama. 2013. “Numerical Investigation of Near-critical Fluid Convective Flow Mixing in Microchannels.” Chemical Engineering Science 97: 67–80. doi:10.1016/j.ces.2013.04.010.
  • Dang, C., and E. Hihara. 9 2010 . “Numerical Study on In-tube Laminar Heat Transfer of Supercritical Fluids.” Applied Thermal Engineering 30 13: 1567–1573.10.1016/j.applthermaleng.2010.03.010
  • Dittus, F. W., and L. M. K. Boelter. 1930. “Heat Transfer in Automobile Radiators of Tubular Type.” University of California Publications in Engineering 2: 443–461.
  • Du, Z., W. Lin, and A. Gu. 2010a. “Numerical Investigation of Cooling Heat Transfer to Supercritical CO2 in a Horizontal Circular Tube.” Journal of Supercritical Fluids 55 (1): 116–121. doi:10.1016/j.supflu.2010.05.023.
  • Du, Z., W. Lin, and A. Gu. “Numerical Investigation of Cooling Heat Transfer to Supercritical CO2 in a Horizontal Circular Tube.” The Journal of Supercritical Fluids 55 (1): 116–121. 10.1016/j.supflu.2010.05.023. 11 2010b.
  • Farhana, K., K. Kadirgama, M. M. Noor, M. M. Rahman, D. Ramasamy, and A. S. F. Mahamude, “CFD Modelling of Different Properties of Nanofluids in Header and Riser Tube of Flat Plate Solar Collector,” in IOP Conference Series: Materials Science and Engineering, 2019, vol. 469, 1 ed., doi: 10.1088/1757-899X/469/1/012041. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061007684&doi=10.1088%2f1757-899X%2f469%2f1%2f012041&partnerID=40&md5=3be4d5c0d98f228d422b9b16d4d6288f
  • Hsieh, J. C., B. H. Lee, M. C. Chung, D. T. W. Lin, and S. H. Guo. 2014a. “Experimental Study of Heat Transfer for Supercritical Carbon Dioxide with Upward Flow in Vertical Tube.” International Journal of Advanced Science and Technology 7: 66–71.
  • Hsieh, J. C., B. H. Lee, D. T. W. Lin, and M. C. Chung. 2014b. “Experimental Study of the Heat Transfer of Supercritical Carbon Dioxide in Silica-based Porous Media.” Energy Procedia 61: 914–917. doi:10.1016/j.egypro.2014.11.994.
  • Hussein, A. M., K. Kadirgama, and M. M. Noor. 2017. “Nanoparticles Suspended in Ethylene Glycol Thermal Properties and Applications: An Overview.” Renewable and Sustainable Energy Reviews 69: 1324–1330. doi:10.1016/j.rser.2016.12.047.
  • Ibrahim, T. A., and A. Gomaa. 2009. “Thermal Performance Criteria of Elliptic Tube Bundle in Crossflow.” International Journal of Thermal Sciences 48 (11): 2148–2158. doi:10.1016/j.ijthermalsci.2009.03.011.
  • İlbaş, M., M. Şahin, and S. Karyeyen. “3D Numerical Modelling of Turbulent Biogas Combustion in a Newly Generated 10 KW Burner.” Journal of the Energy Institute 91 (1): 87–99. 10.1016/j.joei.2016.10.004. 02 January 2018.
  • Jiyuan, T., H. Y. Guan, and L. Chaoqun, ed. 2008. Computational Fluid Dynamics: A Practical Approach. 1st ed. Oxford, UK: Elsevier.
  • Joardar, H., N. Das, and G. Sutradhar. 2011. “An Experimental Study of Effect of Process Parameters in Turning of LM6/SiC P Metal Matrix Composite and Its Prediction Using Response Surface Methodology.” International Journal of Engineering, Science and Technology 3 (8): 132–141.
  • Kim, S. C., J. P. Won, and M. S. Kim. 2009. “Effects of Operating Parameters on the Performance of a CO2 Air Conditioning System for Vehicles.” Applied Thermal Engineering 29 (11–12): 2408–2416. doi:10.1016/j.applthermaleng.2008.12.017.
  • Kim, T. H., J. G. Kwon, S. H. Yoon, H. S. Park, M. H. Kim, and J. E. Cha. 2015. “Numerical Analysis of Air-foil Shaped Fin Performance in Printed Circuit Heat Exchanger in a Supercritical Carbon Dioxide Power Cycle.” Nuclear Engineering and Design 288: 110–118. doi:10.1016/j.nucengdes.2015.03.013.
  • Lam, C. K. G., and K. Bremhorst. 1981. “A Modified Form of the k-ε Model for Predicting Wall Turbulence.” Journal of Fluids Engineering 103 (3): 456–460. doi:10.1115/1.3240815.
  • Lemmon, E. W., M. O. McLinden, and D. G. Friend. “Thermophysical Properties of Fluid Systems”, in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Eds. P.J. Linstrom and W.G. Mallard, National Institute of Standards and Technology, Gaithersburg MD, 20899,  http://webbook.nist.gov
  • Liao, S. M., and T. S. Zhao. 2002. “Measurements of Heat Transfer Coefficients from Supercritical Carbon Dioxide Flowing in Horizontal Mini/Micro Channels.” Journal of Heat Transfer 124 (3): 413–420. doi:10.1115/1.1423906.
  • Lisboa, P. F., J. Fernandes, P. C. Simoes, J. P. B. Mota, and E. Saatdjian. 2010. “Computational-fluid-dynamics Study of a Kenics Static Mixer as a Heat Exchanger for Supercritical Carbon Dioxide.” Journal of Supercritical Fluids 55 (1): 107–155. doi:10.1016/j.supflu.2010.08.005.
  • Liu, X., J. Yu, and G. Yan. 9 2016. “A Numerical Study on the Air-side Heat Transfer of Perforated Finned-tube Heat Exchangers with Large Fin Pitches.” International Journal of Heat and Mass Transfer 100: 199–207. doi: 10.1016/j.ijheatmasstransfer.2016.04.081.
  • Liu, Z. B., Y. L. He, Z. G. Qu, and W. Q. Tao. 2015. “Experimental Study of Heat Transfer and Pressure Drop of Supercritical CO2 Cooled in Metal Foam Tubes.” International Journal of Heat and Mass Transfer 85: 679–693. doi:10.1016/j.ijheatmasstransfer.2015.02.013.
  • Liu, Z. B., Y. L. He, Y. F. Yang, and J. Y. Fei. 2014. “Experimental Study on Heat Transfer and Pressure Drop of Supercritical CO2 Cooled in a Large Tube.” Applied Thermal Engineering 70 (1): 307–315. doi:10.1016/j.applthermaleng.2014.05.024.
  • Mamourian, M., K. M. Shirvan, and S. Mirzakhanlari. 2016. “Two Phase Simulation and Sensitivity Analysis of Effective Parameters on Turbulent Combined Heat Transfer and Pressure Drop in a Solar Heat Exchanger Filled with Nanofluid by Response Surface Methodology.” Energy 109: 49–61. doi:10.1016/j.energy.2016.04.079.
  • Mohammed, H. I., D. Giddings, G. S. Walker, and H. Power. 01 May 2018. “CFD Assessment of the Effect of Nanoparticles on the Heat Transfer Properties of acetone/ZnBr2 Solution.” Applied Thermal Engineering 128: 264–273. doi: 10.1016/j.applthermaleng.2017.08.169.
  • Montgomery, D. C., ed. 2012. Design and Analysis of Experiments. 8th ed. Hoboken: John Wiley & Sons, .
  • Ngo, T. L., Y. Kato, K. Nikitin, and T. Ishizuka. 2007. “Heat Transfer and Pressure Drop Correlations of Microchannel Heat Exchangers with S-shaped and Zigzag Fins for Carbon Dioxide Cycles.” Experimental Thermal and Fluid Science 32 (2): 560–570. doi:10.1016/j.expthermflusci.2007.06.006.
  • Noor, M., A. A. Hairuddin, A. P. Wandel, and T. Yusaf. 2012. “Modelling of Non-premixed Turbulent Combustion of Hydrogen Using Conditional Moment Closure Method.” IOP Conference Series: Materials Science and Engineering 36 (1): 012036. doi:10.1088/1757-899X/36/1/012036.
  • Noor, M. M., A. P. Wandel, and T. Yusaf. 2014. “Simulation of Biogas Combustion in MILD Burner.” Journal of Mechanical Engineering and Sciences 6: 9. doi:10.15282/jmes.6.2014.27.0097.
  • Pettersen, J., A. Hatner, G. Skaugen, and H. Rekstad. 1998. “Development of Compact Heat Exchangers for CO2 Air-conditioning Systems.” International Journal of Refrigeration 21 (3): 180–193. doi:10.1016/S0140-7007(98)00013-9.
  • Rao, N. T., A. N. Oumer, and U. K. Jamaludin. 10 2016. “State-of-the-art on Flow and Heat Transfer Characteristics of Supercritical CO2 in Various Channels.” The Journal of Supercritical Fluids 116: 132–147. doi: 10.1016/j.supflu.2016.05.028.
  • Sarkar, J. 1 January 2014. “On Suitability of Supercritical Carbon Dioxide as Heat Transfer Fluid in Flat Plate Solar Collector”. Journal of Thermal Engineering & Applications 1: 1–9.
  • Shirvan, K. M., M. Mamourian, S. Mirzakhanlari, and E. R. 2016. “Two Phase Simulation and Sensitivity Analysis of Effective Parameters on Combined Heat Transfer and Pressure Drop in a Solar Heat Exchanger Filled with Nanofluid by RSM.” Journal of Molecular Liquids 220: 888–901. doi:10.1016/j.molliq.2016.05.031.
  • Tao, Q., Q. Wu, and X. Zhang. 2010. “Thermal Expansion Pump for Capillary High-performance Liquid Chromatography.” Analytical Chemistry 82 (3): 842–847. doi:10.1021/ac901855t.
  • Xu, J., C. Yang, W. Zhang, and D. Sun. 2015. “Turbulent Convective Heat Transfer of CO2 in a Helical Tube at Near-critical Pressure.” International Journal of Heat and Mass Transfer 80: 748–758. doi:10.1016/j.ijheatmasstransfer.2014.09.066.
  • Xu, R. N., F. Luo, and P. X. Jiang. 2015. “Experimental Research on the Turbulent Convection Heat Transfer of Supercritical Pressure CO2 in a Serpentine Vertical Mini Tube.” International Journal of Heat and Mass Transfer 91: 552–561. doi:10.1016/j.ijheatmasstransfer.2015.08.001.
  • Yang, Z., and T. H. Shih. 1993. “New Time Scale Based κ-ε Model for Near-wall Turbulence.” AIAA Journal 31(7): 1191–1198. [Online]. Available http://www.scopus.com/inward/record.url?eid=2-s2.0-0027628450&partnerID=40&md5=0e19d2997082093e626fd50fcd8ee99a
  • Yoon, S. H., J. H. Kim, Y. W. Hwang, M. S. Kim, K. Min, and Y. Kim. 2003. “Heat Transfer and Pressure Drop Characteristics during the In-tube Cooling Process of Carbon Dioxide in the Supercritical Region.” International Journal of Refrigeration 26 (8): 857–864. doi:10.1016/S0140-7007(03)00096-3.
  • Yoshikawa, S., R. L. Smith Jr, H. Inomata, Y. Matsumura, and K. Arai. 2005. “Performance of a Natural Convection Circulation System for Supercritical Fluids.” Journal of Supercritical Fluids 36 (1): 70–80. doi:10.1016/j.supflu.2005.02.007.
  • Zhang, L., M. Liu, Q. Dong, and S. Zhou. 2011. “Numerical Research of Heat Transfer of Supercritical Carbon Dioxide in Channels.” Energy and Power Engineering 3 (2): 167–173. doi:10.4236/epe.2011.32021.
  • Zhao, Z., and D. Che. 2015. “Numerical Investigation of Conjugate Heat Transfer to Supercritical CO 2 in a Vertical Tube-in-Tube Heat Exchanger.” Numerical Heat Transfer 67 (8): 857–882. doi:10.1080/10407782.2014.949211.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.