429
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of elevated temperature on the calcined clay-limestone and marble stone blended cement concrete

&
Pages 50-67 | Received 01 Sep 2021, Accepted 25 Jan 2022, Published online: 16 May 2022

References

  • Annerel, E., and L. Taerwe. 2009. “Revealing the Temperature History in Concrete after Fire Exposure by Microscopic Analysis.” Cement and Concrete Research 39 (12): 1239–1249. doi:10.1016/j.cemconres.2009.08.017.
  • Antoni, M., J. Rossen, F. Martirena, and K. Scrivener. 2012. “Cement Substitution by a Combination of Metakaolin and Limestone.” Cement and Concrete Research 42 (12): 1579–1589. doi:10.1016/j.cemconres.2012.09.006.
  • Arun, Emmanuel, Palas Haldar, Soumem Maity, and Shashank Bishnoi. 2016. “Second Pilot Production of Limestone Calcined Clay Cement in India: The Experience.” The Indian Concrete Journal 90 (5): 57–64.
  • Avet, François, Emmanuelle Boehm-Courjault, and Karen Scrivener. 2019. “Investigation of C-A-S-H Composition, Morphology and Density in Limestone Calcined Clay Cement (LC3).” Cement and Concrete Research 115 (October 2018): 70–79. doi:10.1016/j.cemconres.2018.10.011.
  • Avet, François, Xuerun Li, and Karen Scrivener. 2018. “Determination of the Amount of Reacted Metakaolin in Calcined Clay Blends.” Cement and Concrete Research 106 (August 2017): 40–48. doi:10.1016/j.cemconres.2018.01.009.
  • Avet, François, and Karen Scrivener. 2018. “Investigation of the Calcined Kaolinite Content on the Hydration of Limestone Calcined Clay Cement (LC3).” Cement and Concrete Research 107 (August 2017): 124–135. doi:10.1016/j.cemconres.2018.02.016.
  • Avet, François, and Karen Scrivener. 2020. “Effect of Temperature on the Water Content of C-A-S-H in Plain Portland and Blended Cements.” Cement and Concrete Research 136 (May): 106124. doi:10.1016/j.cemconres.2020.106124.
  • Caetano H, Ferreira G, Rodrigues J Paulo and Pimienta P. 2019. “Effect of the high temperatures on the microstructure and compressive strength of high strength fibre concretes.“ Construction and Building Materials 199: 717–736. doi:10.1016/j.conbuildmat.2018.12.074.
  • Canbaz, Mehmet. 2014. “The Effect of High Temperature on Reactive Powder Concrete.” Construction and Building Materials 70: 508–513. doi:10.1016/j.conbuildmat.2014.07.097.
  • Choudhary, H. K., A. V. Anupama, R. Kumar, M. E. Panzi, S. Matteppanavar, B. N. Sherikar, and B. Sahoo. 2015. “Observation of Phase Transformations in Cement during Hydration.” Construction and Building Materials 101: 122–129. doi:10.1016/j.conbuildmat.2015.10.027.
  • Cülfik, Mehmet Sait, and Turan Özturan. 2010. “Mechanical Properties of Normal and High Strength Concretes Subjected to High Temperatures and Using Image Analysis to Detect Bond Deteriorations.” Construction and Building Materials 24 (8): 1486–1493. doi:10.1016/j.conbuildmat.2010.01.020.
  • De Weerdt, K., M. Ben Haha, G. Le Saout, K. O. Kjellsen, H. Justnes, and B. Lothenbach. 2011. “Hydration Mechanisms of Ternary Portland Cements Containing Limestone Powder and Fly Ash.” Cement and Concrete Research 41 (3): 279–291. doi:10.1016/j.cemconres.2010.11.014.
  • Demirel, Bahar, and Oǧuzhan Keleştemur. 2010. “Effect of Elevated Temperature on the Mechanical Properties of Concrete Produced with Finely Ground Pumice and Silica Fume.” Fire Safety Journal 45 (6–8): 385–391. doi:10.1016/j.firesaf.2010.08.002.
  • Dhandapani, Yuvaraj, T. Sakthivel, Manu Santhanam, Ravindra Gettu, and Radhakrishna Pillai. 2018. “Mechanical Properties and Durability Performance of Concretes with Limestone Calcined Clay Cement (LC3).” Cement and Concrete Research 107 (November 2017): 136–151. doi:10.1016/j.cemconres.2018.02.005.
  • Fernandes, B., A. M. Gil, F. L. Bolina, and B. F. Tutikian. 2017. “Microstructure of Concrete Subjected to Elevated Temperatures: Physico-Chemical Changes and Analysis Techniques.” Revista IBRACON de Estruturas e Materiais 10 (4): 838–863. doi:10.1590/s1983-41952017000400004.
  • Geetika, Mishra, Arun C. Emmanuel, and Shashank Bishnoi. 2019. “Influence of Temperature on Hydration and Microstructure Properties of Limestone-Calcined Clay Blended Cement.” Materials and Structures/Materiaux Et Constructions 52 (5). doi:10.1617/s11527-019-1390-5.
  • Gettu, R., R. G. Pillai, M. Santhanam, S. Rathnarajan, A. S. Basavaraj, S. Rengaraju, and D. Yuvaraj. 2018. “Service Life and Life-Cycle Assessment of Reinforced Concrete with Fly Ash and Limestone Calcined Clay Cement.” 6th International Conference on Durability of Concrete Structures, ICDCS 2018, Leeds, UK (March):27–35.
  • Hachemi, Samya, and Abdelhafid Ounis. 2019. “The Influence of Sand Nature on the Residual Physical and Mechanical Properties of Concrete after Exposure to Elevated Temperature.” European Journal of Environmental and Civil Engineering 23 (8): 1003–1018. doi:10.1080/19648189.2017.1327893.
  • Handoo, S. K., S. Agarwal, and S. K. Agarwal. 2002. “Physicochemical, Mineralogical, and Morphological Characteristics of Concrete Exposed to Elevated Temperatures.” Cement and Concrete Research 32: 1009–1018. doi:10.1016/S0008-8846(01)00736-0.
  • Haridharan, M. K., C. Natarajan, and Shen En Chen. 2017. “Evaluation of Residual Strength and Durability Aspect of Concrete Cube Exposed to Elevated Temperature.” Journal of Sustainable Cement-Based Materials 6 (4): 231–253. doi:10.1080/21650373.2016.1230898.
  • Indian Standard. 1967. Methods of Test for Pozzolanic Materials. Pp. 1–49 in IS 1727, New Delhi: Bureau of Indian Standard.
  • Indian Standard. 1988. Methods of Physical Tests for Hydraulic Cement, Part 4,5,6,7. in , New Delhi: Bureau of Indian Standard.
  • Indian Standard. 2009. Guidelines for Concrete Mix Design Proportioning. Pp. 1–20 in IS 10262, New Delhi: Bureau of Indian Standard.
  • Indian Standard. 2013. Ordinary Portland Cement,53 Grade- Specification. Pp. 1–17 in IS 12269, New Delhi: Bureau of Indian Standard (BIS).
  • Ismail, Mohammad, Mohamed Elgelany Ismail, and Bala Muhammad. 2011. “Influence of Elevated Temperatures on Physical and Compressive Strength Properties of Concrete Containing Palm Oil Fuel Ash.” Construction and Building Materials 25 (5): 2358–2364. doi:10.1016/j.conbuildmat.2010.11.034.
  • Isteita, Moad, and Yunping Xi. 2017. “The Effect of Temperature Variation on Chloride Penetration in Concrete.” Construction and Building Materials 156: 73–82. doi:10.1016/j.conbuildmat.2017.08.139.
  • Khaliq, Wasim, and Hammad Anis Khan. 2015. “High Temperature Material Properties of Calcium Aluminate Cement Concrete.” Construction and Building Materials 94: 475–487. doi:10.1016/j.conbuildmat.2015.07.023.
  • Khan, Mohammad S. H., Quang Dieu Nguyen, and Arnaud Castel. 2020. “Performance of Limestone Calcined Clay Blended Cement-Based Concrete against Carbonation.” Advances in Cement Research 32 (11): 481–491. doi:10.1680/jadcr.18.00172.
  • Lim, Seungmin, and Paramita Mondal. 2014. “Micro- and Nano-Scale Characterization to Study the Thermal Degradation of Cement-Based Materials.” Materials Characterization 92: 15–25. doi:10.1016/j.matchar.2014.02.010.
  • Lin, Run Sheng, Yi Han, and Xiao Yong Wang. 2021. “Macro–Meso–Micro Experimental Studies of Calcined Clay Limestone Cement (LC3) Paste Subjected to Elevated Temperature.” Cement and Concrete Composites 116 (November 2020): 103871. doi:10.1016/j.cemconcomp.2020.103871.
  • Ma, Qianmin, Rongxin Guo, Zhiman Zhao, Zhiwei Lin, and He. Kecheng. 2015. “Mechanical Properties of Concrete at High Temperature — A Review.” Construction and Building Materials 93: 371–383. doi:10.1016/j.conbuildmat.2015.05.131.
  • Nadeem, Abid, Shazim Ali Memon, and Tommy Yiu Lo. 2014. “The Performance of Fly Ash and Metakaolin Concrete at Elevated Temperatures.” Construction and Building Materials 62: 67–76. doi:10.1016/j.conbuildmat.2014.02.073.
  • Nayaka, Ramappa, U. J. Alengaram, Jumaat Mohd Zamin, and Yusoff Sumiani Binti. 2018. “Microstructural Investigation and Durability Performance of High Volume Industrial By-Products-Based Masonry Mortars.” Construction and Building Materials Journal 189 (September): 906–923. doi:10.1016/j.conbuildmat.2018.09.020.
  • Nguyen, Quang Dieu, and Arnaud Castel. 2020. “Reinforcement Corrosion in Limestone Flash Calcined Clay Cement-Based Concrete.” Cement and Concrete Research 132 (February): 106051. doi:10.1016/j.cemconres.2020.106051.
  • Nguyen, Quang Dieu, Mohammad Shakhaout Hossain Khan, and Arnaud Castel. 2018. “Engineering Properties of Limestone Calcined Clay Concrete.” Journal of Advanced Concrete Technology 16 (8): 343–357. doi:10.3151/jact.16.343.
  • Peng, Gai Fei, and Zhi Shan Huang. 2008. “Change in Microstructure of Hardened Cement Paste Subjected to Elevated Temperatures.” Construction and Building Materials 22 (4): 593–599. doi:10.1016/j.conbuildmat.2006.11.002.
  • Pillai, Radhakrishna G., Ravindra Gettu, Manu Santhanam, Sripriya Rengaraju, Yuvaraj Dhandapani, Sundar Rathnarajan, and Anusha S. Basavaraj. 2019. “Service Life and Life Cycle Assessment of Reinforced Concrete Systems with Limestone Calcined Clay Cement (LC3).” Cement and Concrete Research 118 (November): 111–119. doi:10.1016/j.cemconres.2018.11.019.
  • Sancak, Emre, Y. Dursun Sari, and Osman Simsek. 2008. “Effects of Elevated Temperature on Compressive Strength and Weight Loss of the Light-Weight Concrete with Silica Fume and Superplasticizer.” Cement and Concrete Composites 30 (8): 715–721. doi:10.1016/j.cemconcomp.2008.01.004.
  • Savva, A., P. Manita, and K. K. Sideris. 2005. “Influence of Elevated Temperatures on the Mechanical Properties of Blended Cement Concretes Prepared with Limestone and Siliceous Aggregates.” Cement and Concrete Composites 27 (2): 239–248. doi:10.1016/j.cemconcomp.2004.02.013.
  • Scrivener, Karen L. 2014. “Options for the Future of Cement.” The Indian Concrete Journal 88 (7): 11–21.
  • Scrivener, Karen, Fernando Martirena, Shashank Bishnoi, and Soumen Maity. 2017. “Calcined Clay Limestone Cements (LC3).” Cement and Concrete Research, no. August: 0–1. doi:10.1016/j.cemconres.2017.08.017.
  • Scrivener, Karen, Fernando Martirena, Shashank Bishnoi, and Soumen Maity. 2018. “Calcined Clay Limestone Cements (LC3).” Cement and Concrete Research 114 (November 2017): 49–56. doi:10.1016/j.cemconres.2017.08.017.
  • Sepulcre-Aguilar, Alberto, and Francisco Hernández-Olivares. 2010. “Assessment of Phase Formation in Lime-Based Mortars with Added Metakaolin, Portland Cement and Sepiolite, for Grouting of Historic Masonry.” Cement and Concrete Research 40 (1): 66–76. doi:10.1016/j.cemconres.2009.08.028.
  • Shah, Vineet, and Shashank Bishnoi. 2015. “Use of Marble Dust as Clinker Replacement in Cement.” Indian Concrete Journal 89: 27–32.
  • Shah, Vineet, Anuj Parashar, Geetika Mishra, Satya Medepalli, Sreejith Krishnan, and Shashank Bishnoi. 2020. “Influence of Cement Replacement by Limestone Calcined Clay Pozzolan on the Engineering Properties of Mortar and Concrete.” Advances in Cement Research 32 (3): 101–111. doi:10.1680/jadcr.18.00073.
  • Shiju, Joseph, Bishnoi Shashank, and Maity Soumen. 2016. “An Economic Analysis of the Production of Limestone Calcined Clay Cement in India.” Indian Concrete Journal 90 (11): 22–27.
  • Shumuye, Eskinder Desta, Jun Zhao, and Zike Wang. 2019. “Effect of Fire Exposure on Physico-Mechanical and Microstructural Properties of Concrete Containing High Volume Slag Cement.” Construction and Building Materials 213: 447–458. doi:10.1016/j.conbuildmat.2019.04.079.
  • Tantawy, M. A. 2017. “Effect of High Temperatures on the Microstructure of Cement Paste.” Journal of Materials Science and Chemical Engineering 05 (11): 33–48. doi:10.4236/msce.2017.511004.
  • Traoré, Karfa, Tibo Siméon Kabré, and Philippe Blanchart. 2003. “Gehlenite and Anorthite Crystallisation from Kaolinite and Calcite Mix.” Ceramics International 29 (4): 377–383. doi:10.1016/S0272-8842(02)00148-7.
  • Wang, Yuyin, Faqi Liu, Liangfu Xu, and Hui Zhao. 2019. “Effect of Elevated Temperatures and Cooling Methods on Strength of Concrete Made with Coarse and Fine Recycled Concrete Aggregates.” Construction and Building Materials 210: 540–547. doi:10.1016/j.conbuildmat.2019.03.215.
  • Wang, Guiming, Chao Zhang, Bin Zhang, Li Qiu, and Zhonghe Shui. 2014. “Study on the High-Temperature Behavior and Rehydration Characteristics of Hardened Cement Paste.” FIRE AND MATERIALS 39 (8): 1–10.
  • Yang, Pu, Yuvaraj Dhandapani, Manu Santhanam, and Narayanan Neithalath. 2020. “Simulation of Chloride Diffusion in Fly Ash and Limestone-Calcined Clay Cement (LC3) Concretes and the Influence of Damage on Service-Life.” Cement and Concrete Research 130 (May 2019): 106010. doi:10.1016/j.cemconres.2020.106010.
  • Yang, Hsuanchih, Yiching Lin, Chiamen Hsiao, and Jian You Liu. 2009. “Evaluating Residual Compressive Strength of Concrete at Elevated Temperatures Using Ultrasonic Pulse Velocity.” Fire Safety Journal 44 (1): 121–130. doi:10.1016/j.firesaf.2008.05.003.
  • Ylmén, Rikard, Ulf Jäglid, Britt Marie Steenari, and Itai Panas. 2009. “Early Hydration and Setting of Portland Cement Monitored by IR, SEM and Vicat Techniques.” Cement and Concrete Research 39 (5): 433–439. doi:10.1016/j.cemconres.2009.01.017.
  • Zhang, Xingguo, Jixiang Yang, Kun Li, Hong Pu, Xiongying Meng, Hong Zhang, and Kaiqiaing Liu. 2020. “Effects of Steam on the Compressive Strength and Microstructure of Cement Paste Cured under Alternating Ultrahigh Temperature.” Cement and Concrete Composites 112 (October 2019): 103681. doi:10.1016/j.cemconcomp.2020.103681.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.