46
Views
0
CrossRef citations to date
0
Altmetric
Case Report

Recommended rock joints setting in 2D FEM simulations for engineering design of excavations created in jointed rockmass

ORCID Icon & ORCID Icon
Pages 88-106 | Received 11 Oct 2023, Accepted 04 Mar 2024, Published online: 22 Mar 2024

References

  • An, H., S. Wu, H. Liu, and H. Wang. 2022. “Hybrid Finite-Discrete Element Modelling of Various Rock Fracture Modes During Three Conventional Bending Tests.” Sustainability 14 (2): 592. https://doi.org/10.3390/su14020592.
  • Baecher, G. B., N. A. Lanney, and H. H. Einstein. 1978. “Statistical Description of Rock Properties and Sampling.” Proceedings of the 18th US Symposium on Rock Mechanics, Golden, Colorado, June 22–24, 1977, 5C1–8.
  • Bandis, S. C., A. C. Lumsden, and N. R. Barton. 1983. “Fundamentals of Rock Joint Deformation.” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 20 (6): 249–268. https://doi.org/10.1016/0148-9062(83)90595-8.
  • Barla, G., and M. Barla. 2000. “Continuum and discontinuum modelling in tunnel engineering.” Rudarsko Geolosko Naftni Zbornik; Zagreb 12 (1): 45–57.
  • Barrosa, G., V. Sapucaiac, P. Hartmanna, A. Pereirac, J. Rojekb, and K. Thoenia. (2023). “A Novel BEM-DEM Coupling in the Time Domain for Simulating Dynamic Problems in Continuous and Discontinuous Media.” Computer Methods in Applied Mechanics and Engineering 410 (2023): 116040. https://doi.org/10.1016/j.cma.2023.116040.
  • Barton, N. 1976. “The Shear Strength of Rock and Rock Joints.” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 13 (9): 255–279. https://doi.org/10.1016/0148-9062(76)90003-6.
  • Barton, N. 1983. Application of Q-System and Index Tests to Estimate Shear Strength and Deformability of Rock Masses. Proceedings of the International Symposium of Engineering Geology and Underground Construction, Lisbon, Portugal, Vol 2, II.51–II.70.
  • Barton, N. 1995. The Influence of Joint Properties in Modelling Jointed Rock Masses. Keynote Lecture, In: 8th ISRM Congress. January 1995 at Tokyo, Japan. 1023–1032
  • Barton, N. 2014. Shear Strength of Rock, Rock Joints, and Rock Masses: Problems and Some Solutions. Keynote Lecture, TheISRM Regional Symposium - EUROCK 2014, Vigo, Spain, May 2014. ISRM-EUROCK-2014-001
  • Barton, N. R. 1974. A Review of the Shear Strength of Filled Discontinuities in Rock. Norwegian Geotech Inst Publ No 105. Oslo: Norwegian Geotech Inst.
  • Barton, N. R. 1998. Quantitative Description of Rock Masses for the Design of NMT Reinforcement. In Proceedings of the international conference on hydro power development in Himalayas, edited by V. D. Choubey, April 20 -22, 1998, Shimla, India. Rotterdam: Balkema.
  • Barton, N. R., and S. C. Bandis. 1990. “Review of Predictive Capabilities of JRC-JCS Model in Engineering Practice.” In Proc Int Symp on Rock Joints, edited by N R Barton and O Stephansson, 603–610. Loen, Norway, Rotterdam: Balkema.
  • Barton, N., T. L. By, P. Chryssanthakis, L. Tunbridge, J. Kristiansen, F. Løset, R. K. Bhasin, H. Westerdahl, and G. Vik. 1994. “Predicted and Measured Performance of the 62 M Span Norwegian Olympic Ice Hockey Cavern at Gjøvik.” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 31 (6): 617–641. https://doi.org/10.1016/0148-9062(94)90004-3.
  • Barton, N., and V. Choubey. 1977. “The Shear Strength of Rock Joints in Theory and Practice.” In Rock Mechanics, Vol. 10, 1–54. Vienna: Springer. https://doi.org/10.1007/BF01261801.
  • Barton, N., R. Lien, and J. Lunde. 1974. “Engineering Classification of Rock Masses for Design of Tunnel Support.” Rock Mechanics 6 (4): 189–236. https://doi.org/10.1007/BF01239496.
  • BD (Buildings Department). 2015. Application for prior acceptance of computer program PHASE2. Approval letter reference no: 24 in GR/OA/71 GEO(50). Buildings Department, the Government of Hong Kong Special Administrative Region, Hong Kong.
  • Beer, G., and J. O. Watson. 1992. Introduction to Finite and Boundary Element Methods for Engineers. New York, US: John Wiley.
  • Bentley. 2020. Plaxis 3D (Version 20) Numercial Software Package. Virtuosity. A Bentley Company. https://www.virtuosity.com/.
  • Bentley. 2021. Plaxis 2D (Version 21) Numercial Software Package. Virtuosity. A Bentley Company. https://www.virtuosity.com//.
  • Bieniawski, Z. T. 1989. Engineering Rock Mass Classifications. 251p. New York: Wiley.
  • Boscardin, M. D., and E. G. Cording. 1989. “Building Response to Excavation-Induced Settlement.” Journal of Geotechnical Engineering 115 (1): 1–21. https://doi.org/10.1061/(ASCE)0733-9410(1989)115:1(1).
  • Brady, B. H. G., and E. T. Brown. 2006. Rock Mechanics: For Underground Mining. 3 ed. Springer Science + Business Media, Inc.
  • Brown, E. T. 2004. “The Mechanics of Discontinua: Engineering in Discontinuous Rock Masses.” Australian Geomechanics 39 (2): 1–20.
  • BSI. 2013. BS EN 1997-1:2004 +A1:2013 Eurocode 7: Geotechnical Design – Part 1: General Rules. BSI Standards Limited, UK: The British Standards Institution.
  • Burland, J. B., B. Broms, and V. F. B. De Mello. 1977. Behaviour of Foundations and Structures - SOA Report, Session 2, Proc. 9th Int. Conf. SMFE, Tokyo, 2; 495–546.
  • Cai, M., and H. Horii. 1992. “A Constitutive Model of Highly Jointed Rock Masses.” Mechanics of Materials 13 (3): 217–246. https://doi.org/10.1016/0167-6636(92)90004-W.
  • Cai, M., P. K. Kaiser, H. Uno, Y. Tasaka, and M. Minami. 2004. “Estimation of Rock Mass Strength and Deformation Modulus of Jointed Hard Rock Masses Using the GSI System.” International Journal of Rock Mechanics & Mining Sciences 41 (1): 3–19. https://doi.org/10.1016/S1365-1609(03)00025-X.
  • Chen, S. G., and J. Zhao. (2002). “Modeling of Tunnel Excavation Using a Hybrid DEM/BEM Method.” Computer-Aided Civil and Infrastructure Engineering 17 (5): 381–386. https://doi.org/10.1111/1467-8667.00284.
  • Deere, D. U., and R. P. Miller. 1966. Engineering Classification and Index Properties of Rock. Technical Report No AFNL-TR-65-116. Albuquerque, NM: Air Force Weapons Laboratory.
  • Dershowitz, W. 1985. Rock Joint Systems. PhD Thesis, Massachusetts Institute of Technology. Cambridge, MA.
  • Elsworth, D. 1986. “A Hybrid Boundary Element-Finite Element Analysis Procedure for Fluid Flow Simulation in Fractured Rock Masses.” International Journal for Numerical and Analytical Methods in Geomechanics 10 (6): 569–584. https://doi.org/10.1002/nag.1610100603.
  • Feng, F., Z. Xie, T. Xue, E. Wang, R. Huang, X. Li, and S. Gao. 2023. “Application of a Combined FEM/DEM Approach for Teaching a Deep Rock Mass Mechanics Course.” Sustainability 15 (2): 937. https://doi.org/10.3390/su15020937.
  • Hammah, R. E., T. E. Yacoub, B. Corkum, and J. H. Curran. 2008. The Practical Modeling of Discontinuous Rock Masses with Finite Element Analysis. Proceedings of the 42nd US Rock Mechanics Symposium - 2nd US-Canada Rock Mechanics Symposium. San Francisco, US
  • Hammah, R. E., T. E. Yacoub, B. Corkum, F. Wibowo, and J. H. Curran. 2007. Analysis of Blocky Rock Slopes with Finite Element Shear Strength Reduction Analysis. In: Proceedings of the 1st Canada-US Rock Mechanics Symposium. Vancouver, Canada, 329–334
  • Hoek, E. 1994. “Strength of Rock and Rock Masses.” ISRM News Journal 2 (2): 4–16.
  • Hoek, E. 2007. Practical Rock Engineering. 2007 ed. https://www.rocscience.com/education/hoeks_corner.
  • Hoek, E., and E. T. Brown. 1980. Underground Excavations in Rock. Institution of Mining and Metallurgy. Institution of Mining and Metallurgy, 527. London, UK: E & FN SPON.
  • Hoek, E., and E. T. Brown. 1997. “Practical Estimates of Rock Mass Strength.” International Journal of Rock Mechanics & Mining Sciences 34 (8): 1165–1186. https://doi.org/10.1016/S1365-1609(97)80069-X.
  • Hoek, E., P. K. Kaiser, and W. F. Bawden. 1995. Support of Underground Excavations in Hard Rock. Florida, US: CRC Press, Taylor & Francis Group.
  • Hoek, E., P. Marinos, and M. Benissi. 1998. “Applicability of the Geological Strength Index (GSI) Classification for Very Weak and Sheared Rock Masses. The Case of the Athens Schist Formation.” Bulletin of Engineering Geology and the Environment 57 (2): 151–160. https://doi.org/10.1007/s100640050031.
  • Huang, M., C. Hong, C. Ma, Z. Luo, and S. Du. 2020. “Characterization of Rock Joint Surface Anisotropy Considering the Contribution Ratios of Undulations in Different Directions.” Scientific Reports 10 (1): Article ID 17117. https://doi.org/10.1038/s41598-020-74229-z.
  • Huan, J., M. He, Z. Zhang, and N. Li. 2019. “A New Method to Estimate the Joint Roughness Coefficient by Back Calculation of Shear Strength.” Advances in Civil Engineering 2019:1–15. https://doi.org/10.1155/2019/7897529.
  • Hudson, J. A. 1992. Rock Engineering Systems: Theory and Practice, 185. Chichester: Ellis Horwood.
  • Hudson, J. A., and J. P. Harrison. 1997. Engineering Rock Mechanics: An Introduction to the Principles. 456p. Oxford: Pergamon, Elsevier Science.
  • Hussain, S., Z. U. Rehman, N. Mohammad, M. Tahir, K. Shahzada, S. W. Khan, M. Salman, M. Khan, and A. Gul. 2018. “Numerical Modeling for Engineering Analysis and Designing of Optimum Support Systems for Headrace Tunnel.” Advances in Civil Engineering 2018:10. Article ID 7159873. https://doi.org/10.1155/2018/7159873.
  • ISRM (International Society for Rock Mechanics). 1978. “International Society for Rock Mechanics Commission on Standardization of Laboratory and Field Tests. Suggested Methods for the Quantitative Description of Discontinuities in Rock Masses.” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 15 (6): 319–368. https://doi.org/10.1016/0148-9062(78)91472-9.
  • Itasca. 2018. UDEC (V7) Numerical Software Package. Minneapolis: Itasca Consulting Group Inc. http:///www.itascacg.com/.
  • Itasca. 2019a. 3DEC (V7) Numerical Software Package. Minneapolis: Itasca Consulting Group Inc. http://www.it/ascacg.com/.
  • Itasca. 2019b. FLAC (V8) Numerical Software Package. Minneapolis: Itasca Consulting Group Inc. http://www.ita/scacg.com/.
  • Itasca. 2019c. FLAC3D (V7) Numerical Software Package. Minneapolis: Itasca Consulting Group Inc. http://www.itas/cacg.com/.
  • Jing, L., and J. A. Hudson. 2002. “Numerical Methods in Rock Mechanics.” International Journal of Rock Mechanics & Mining Sciences 39 (4): 409–427. https://doi.org/10.1016/S1365-1609(02)00065-5.
  • Kim, B. H., M. Cai, P. K. Kaiser, and H. S. Yang. 2007. “Estimation of Block Sizes for Rock Masses with Non-Persistent Joints.” Rock Mechanics & Rock Engineering 40 (2): 169–192. https://doi.org/10.1007/s00603-006-0093-8.
  • Kong, K. W. K., P. H. Cai, and T. K. M. Tang. 2016. “Validation of FEM Computer Program for Under-Ground Excavations in Jointed Rock.” HKIE Transactions 23 (2): 74–84. https://doi.org/10.1080/1023697X.2015.1131639.
  • Lake, L. M., W. J. Rankin, and J. Hawley. 1996. Prediction and Effects of Ground Movements Caused by Tunnelling in Soft Ground Beneath Urban Areas. Project Report 30, CIRIA Core Program. The Construction Industry Research and Information Association, UK.
  • Lebeda, M., and P. Kabele. 2023. Analysis of Tunnel Excavation Based on Linear DFN-FEM Modelling. Acta Polytechnica CTU Proceedings 40:61–68. https://doi.org/10.14311/APP.2023.40.0061
  • Lê, H. K., W. Huang, M. Liao, and M. Weng. 2018. “Spatial Characteristics of Rock Joint Profile Roughness and Mechanical Behavior of a Randomly Generated Rock Joint.” Engineering Geology 245:97–105. https://doi.org/10.1016/j.enggeo.2018.06.017.
  • Lisjak, A., G. Grasselli, and T. Vietor. 2014. “Continuum–Discontinuum Analysis of Failure Mechanisms Around Unsupported Circular Excavations in Anisotropic Clay Shales.” International Journal of Rock Mechanics & Mining Sciences 65:96–115. https://doi.org/10.1016/j.ijrmms.2013.10.006.
  • Lorig, L. J., B. H. G. Brady, and P. A. Cundall. 1986. “Hybrid Distinct Element-Boundary Element Analysis of Jointed Rock.” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 23 (4): 303–312. https://doi.org/10.1016/0148-9062(86)90642-X.
  • Marinos, P., and E. Hoek. 2001. “Estimating the Geotechnical Properties of Heterogeneous Rock Masses Such As Flysch.” Bulletin of Engineering Geology and the Environment 60 (2): 85–92. https://doi.org/10.1007/s100640000090.
  • Markus, S. L., and M. S. Diederichs. 2022. “Use of Continuum and Pseudo-Discontinuum FEM Models in Stepwise Verification of the FDEM for Simulating Damage Around Tunnels in Brittle Rock.” In The Evolution of Geotech - 25 Years of Innovation, edited by R E Hammah, T E Yacoub, A McQuillan, and J Curran, 134–140. CRC Press, Taylor & Francis Group: Florida, US.
  • Mayer, J. M., P. Hamdi, and D. Stead. 2014. A Modified Discrete Fracture Network Approach for Geomechanical Simulation. Proceeding of the International Discrete Fracture Network Engineering Conference. Vancouver, Canada, No. 126
  • Ni, P., S. Wang, C. Wang, and S. Zhang. 2017. “Estimation of REV Size for Fractured Rock Mass Based on Damage Coefficient.” Rock Mechanics & Rock Engineering 50 (3): 555–570. https://doi.org/10.1007/s00603-016-1122-x.
  • Palmström, A. 2000. Block Size and Block Size Distribution. Presented at the Workshop on “Reliablity of classification systems” in connection with the GeoEng2000 Conference. Melbourne, 18–24 November 2000
  • Palmström, A., and H. Stille. 2010. Rock Engineering. 408p. London: Thomas Telford.
  • Pan, X. D., and M. B. Reed. 1991. “A Coupled Distinct Element—Finite Element Method for Large Deformation Analysis of Rock Masses.” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 28 (1): 93–99. https://doi.org/10.1016/0148-9062(91)93238-2.
  • Prazeres, P. G. C., K. Thoeni, and G. Beer. (2012). “Nonlinear Analysis of NATM Tunnel Construction with the Boundaryelement Method.” Computers and Geotechnics 40 (2012): 160–173. https://doi.org/10.1016/j.compgeo.2011.10.005.
  • Priest, S. D., and J. A. Hudson. 1981. “Estimation of Discontinuity Spacing and Trace Length Using Scanline Surveys.” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 18 (3): 183–197. https://doi.org/10.1016/0148-9062(81)90973-6.
  • Rankin, W. J. 1988. “Ground Movements Resulting from Urban Tunnelling: Predictions and Effects.” Geological Society, London, Engineering Geology Special Publications 5 (1): 79–92. https://doi.org/10.1144/GSL.ENG.1988.005.01.06.
  • Riahi, A., E. R. Hammah, and J. H. Curran. 2010. Limits of Applicability of the Finite Element Explicit Joint Model in the Analysis of Jointed Rock Problems. In: Proceedings of the 44th US Rock Mechanics Symposium and 5th US-Canada Rock Mechanics Symposium. Salt Lake City, Utah, US.
  • Rocscience. 2020. RS3 (V4) Numerical Software Package. Toronto: Rocscience Inc. www.rocscienc/e.com.
  • Rocscience. 2021. RS2 (Formerly PHASE2 V9) Numerical Software Package. Toronto: Rocscience Inc. www.rocscie/nce.com.
  • Schweiger, H. F., C. Fabris, G. Ausweger, and L. Hauser. (2019). “Examples of successful numerical modelling of complex geotechnical problems.” Innovative Infrastructure Solutions 4 (1): 2. https://doi.org/10.1007/s41062-018-0189-5.
  • Shang, J., L. J. West, S. R. Hencher, and Z. Zhao. 2018. “Geological Discontinuity Persistence: Implications and quantification.” Engineering Geology 241 (2018): 41–54. https://doi.org/10.1016/j.enggeo.2018.05.010.
  • Shapka-Fels, T., and D. Elmo. 2022. “Numerical Modelling Challenges in Rock Engineering with Special Consideration of Open Pit to Underground Mine Interaction.” Geosciences 12 (5): 199. https://doi.org/10.3390/geosciences12050199.
  • Shen, B., J. Shi, and N. Barton. 2018. “An Approximate Nonlinear Modified Mohr-Coulomb Shear Strength Criterion with Critical State for Intact Rocks.” Journal of Rock Mechanics and Geotechnical Engineering 10 (4): 645–652. https://doi.org/10.1016/j.jrmge.2018.04.002.
  • Sitharam, T. G. 2017. “Practical Equivalent Continuum Analyses of Jointed Rockmass: Experiments, Numerical Modeling Validation and Field Case Studies.” In Rock Mechanics and Engineering, Vol. 3: Analysis, Modeling & Design. Chapter 6, edited by X Feng. Florida, US: CRC Press, Taylor & Francis Group.
  • Wang, S., P. Ni, and M. Guo. 2013. “Spatial Characterization of Joint Planes and Stability Analysis of Tunnel Blocks.” Tunnelling and Underground Space Technology 38:357–367. https://doi.org/10.1016/j.tust.2013.07.017.
  • Wu, Q., and P. H. S. W. Kulatilake. 2012. “REV and Its Properties on Fracture System and Mechanical Properties, and an Orthotropic Constitutive Model for a Jointed Rock Mass in a Dam Site in China.” Computers and Geotechnics 43:124–142. https://doi.org/10.1016/j.compgeo.2012.02.010.
  • Xia, L., Y. Zheng, and Q. Yu. 2016. “Estimation of the REV Size for Blockiness of Fractured Rock Masses.” Computers and Geotechnics 76:83–92. https://doi.org/10.1016/j.compgeo.2016.02.016.
  • Yang, X. X., H. Jinga, C. Tang, and S. Yanga. (2017). “Effect of Parallel Joint Interaction on Mechanical Behavior of Jointed Rock Mass Models.” International Journal of Rock Mechanics & Mining Sciences 92 (2017): 40–53. https://doi.org/10.1016/j.ijrmms.2016.12.010.
  • Zhang, W., J. Chen, H. Chen, D. Xu, and Y. Li. 2013. “Determination of RVE with Consideration of the Spatial Effect.” International Journal of Rock Mechanics & Mining Sciences 61:154–160. https://doi.org/10.1016/j.ijrmms.2013.02.013.
  • Zhang, W., J. Chen, C. Liu, R. Huang, M. Li, and Y. Zhang. 2012. “Determination of Geometrical and Structural Representative Volume Elements at the Baihetan Dam Site.” Rock Mechanics & Rock Engineering 45 (3): 409–419. https://doi.org/10.1007/s00603-011-0191-0.
  • Zhang, G., and W. Xu. 2008. “Analysis of Joint Network Simulation Method and REV Scale.” Rock and Soil Mechanics 29(6):1675–1680.
  • Zheng, Y., L. Xia, and Q. Yu. 2015. “Analysis of Removability and Stability of Rock Blocks by Considering the Rock Bridge Effect.” Canadian Geotechnical Journal 53 (3): 384–395. https://doi.org/10.1139/cgj-2014-0503.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.