355
Views
5
CrossRef citations to date
0
Altmetric
Review Article

Comparison of advanced troposphere models for aiding reduction of PPP convergence time in Australia

& ORCID Icon

References

  • Andrei, C.O. and Chen, R., 2009. Assessment of time-series of troposphere zenith delays derived from the Global Data Assimilation System numerical weather model. GPS Solutions, 13, 109–117. doi:10.1007/s10291-008-0104-1.
  • Askne, J. and Nordius, H., 1987. Estimation of tropospheric delay for microwaves from surface weather data. Radio Science, 22 (3), 379–386.10.1029/RS022i003p00379
  • Böhm, J., Heinkelmann, R., and Schuh, H., 2007. Short note: A global model of pressure and temperature for geodetic applications. Journal of Geodesy, 81 (10), 679–683. doi:10.1007/s00190-007-0135-3.
  • Böhm, J., Werl, B., and Schuh, H., 2006a. Troposphere mapping functions for GPS and VLBI from ECMWF operational analysis data. Journal of Geophysical Research, 111 (B02406), 1–9. doi:10.1029/2005JB003629.
  • Böhm, J., et al., 2006b. Global mapping function (GMF): a new empirical mapping function based on data from numerical weather model data. Geophysical Research Letters, 33 (L07304), 1–4. doi:10.1029/2005GL025546.
  • Böhm, J., et al., 2015. Development of an improved empirical model for slant delays in the troposphere (GPT2w). GPS Solutions, 19, 433–441. doi:10.1007/s1029-014-0403-7.
  • Collins, P., Langley, R.B., and LaMance, J. 1996. Limiting factors in tropospheric propagation delay error modelling for GPS airborne navigation. In: Proceedings ION-AM-1996, June 19–21, Cambridge, Massachusetts, Institute of Navigation, 519–528.
  • Davis, J.L., et al., 1985. Geodesy by radio interferometry: effects of atmospheric modelling errors on estimates of baseline length. Radio Science, 20 (6), 1593–1607.10.1029/RS020i006p01593
  • Deo, M. and El-Mowafy, A. 2016. Triple-frequency GNSS models for PPP with float ambiguity estimation: performance comparison using GPS. Survey Review, 50, 249–261. https://doi.org/10.1080/00396265.2016.1263179.
  • El-Mowafy, A., 2015. Estimation of multi-constellation GNSS observation stochastic properties using a single-receiver single-satellite data validation method. Survey Review, 47 (341), 99–108.10.1179/1752270614Y.0000000100
  • El-Mowafy, A. and Lo, J., 2014. Dynamic modelling of GNSS troposphere wet delay for estimation of precipitable water vapour. Journal of Applied Geodesy, 8 (1), 31–42.
  • IERS Conventions, Petit, G, and Luzum, B., eds. 2010. IERS Technical Note 36, Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie, 179 pp, ISBN 3-89888-989-6.
  • Kjørsvik, NS, Gjevestad JGO, and Øvstedal O. 2006. Handling of the tropospheric delay in kinematic precise point positioning. In: Proceedings of the 19th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2006), September 2006 Fort Worth, TX, 2279–2281.
  • Kouba, J., 2009. Testing of global pressure/temperature (GPT) model and global mapping function (GMF) in GPS analyses. Journal of Geodesy, 83, 199–208.10.1007/s00190-008-0229-6
  • Krueger E, et al. 2004. Galileo tropospheric correction approaches developed within GSTB-V1. In: Proceedings of ENC-GNSS 2004, Rotterdam, The Netherlands, May 16–19.
  • Lagler, K., et al., 2013. GPT2: Empirical slant delay model for radio space geodetic techniques. Geophysical Research Letters, 40, 1069–1073.10.1002/grl.50288
  • Laurichesse D and Privat A. 2015. An Open-source PPP Client Implementation for the CNES PPP-WIZARD Demonstrator, ION GNSS 2015, September 15-18, 2015, Tampa, Florida.
  • Li, W., et al., 2012. A new global zenith tropospheric delay model IGGtrop for GNSS applications. Chinese Science Bulletin, 57 (17), 2132–2139.10.1007/s11434-012-5010-9
  • Li, T., Wang, J., and Laurichesse, D., 2014. Modeling and quality control for reliable precise point positioning integer ambiguity resolution with GNSS modernization. GPS Solutions, 18 (3), 429–442.10.1007/s10291-013-0342-8
  • Lu, C., et al., 2016. Tropospheric delay parameters from numerical weather models for multi-GNSS precise positioning. Atmospheric Measurement Techniques, 9, 5965–5973. doi:10.5194/amt-9-5965-2016.
  • Lu, C, et al. 2017. Real-time tropospheric delays retrieved from multi-GNSS observations and IGS real-time product streams. Remote Sensing 9(12), 1317. doi:10.3390/rs9121317.
  • Martellucci, A. 2012. Galileo reference troposphere model for the user receiver. ESA-APPNG-REF/00621-AM v2.7.
  • Neill, A.E., 1996. Global mapping functions for the atmosphere delay at radio wavelengths. Journal of Geophysical Research, 101 (B2), 3227–3246.10.1029/95JB03048
  • Saastamoinen, J., 1972. Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. Geophysical Monograph. Henriksen (ed), 15, 247–251.
  • Saastamoinen, J., 1973. Contributions to the theory of atmospheric refraction. Bullétin Géodésique 107(1), 13–34. Part 3 of 3.
  • Schüler, T., 2014. The TropGrid2 standard tropospheric correction model. GPS Solutions, 18 (1), 123–131.10.1007/s10291-013-0316-x
  • Shi, J., et al., 2014. Local troposphere augmentation for real-time precise point positioning. Earth, Planets and Space, 66 (30), 1–13. doi:10.1186/1880-5981-66-30.
  • Steigenberger, P., Böhm, J., and Tesmer, V., 2009. Comparison of GMF/GPT with VMF1/ECMWF and implications for atmospheric loading. Journal of Geodesy, 83 (10), 943–951. doi:10.1007/s00190-009-0311-8.
  • Talbot, N., et al. 2015. Trimble RTX orbit determination and user positioning performance with BeiDou satellites, IGNSS Conference, 6–8 December 2016, UNSW Australia.
  • Tuka, A. and El-Mowafy, A., 2013. Performance evaluation of different troposphere delay models and mapping functions. Measurement, 46 (2), 928–937. doi:10.1016/j.measurement.2012.10.015.
  • Vaclavovic, P., et al., 2017. Using external tropospheric corrections to improve GNSS positioning of hot-air balloon. GPS Solutions, 21, 1479. doi:10.1007/s10291-017-0628-3.
  • Yue, X., et al., 2010. Error analysis of Abel retrieved electron density profiles from radio occultation measurements. Annales Geophysicae, 28, 217–222. doi:10.5194/angeo-28-217-2010.
  • Zhang, H., et al., 2016. Assessment of three tropospheric delay models (IGGtrop, EGNOS and UNB3 m) based on precise point positioning in the chinese region. Sensors, 16 (122), 1–12. doi:10.3390/s16010122.
  • Zheng, F., et al. 2017. Modeling tropospheric wet delays with national GNSS reference network in China for BeiDou precise point positioning. Journal of Geodesy. published online 29 Oct 2017, 1–16, doi: 10.1007/s00190-017-1080-4.
  • Zhou, C, et al., 2017. Establishment of a site-specific tropospheric model based on ground meteorological parameters over the China region. Sensors, 17(8), 1722. doi:10.3390/s17081722.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.