1,146
Views
39
CrossRef citations to date
0
Altmetric
Original Articles

Multi-GNSS precise point positioning with next-generation smartphone measurements

ORCID Icon, , , &

References

  • Abrahams, J., 2018. NovAtel® demonstrates precise positioning using the Teseo APP and Teseo V automotive GNSS chipsets from STMicroelectronics. GlobeNewswire. Available from: https://www.globenewswire.com/news-release/2018/03/07/1416288/0/en/NovAtel-Demonstrates-Precise-Positioning-Using-the-Teseo-APP-and-Teseo-V-Automotive-GNSS-Chipsets-from-STMicroelectronics.html [Accessed 23 Apr 2018].
  • Aggrey, J. and Bisnath, S., 2017. Analysis of multi-GNSS PPP initialization using dual- and triple-frequency data. Proceedings of the 2017 International Technical Meeting of The Institute of Navigation, 445–458. Monterey, California.
  • Aggrey, J.E., 2015. Multi-GNSS precise point positioning software architecture and analysis of GLONASS pseudorange biases. Thesis (MSc). York University.
  • Al Khairy, M., 2018. Snapdragon X24: world’s first announced 2 Gbps LTE modem. Qualcomm. Available from: https://www.qualcomm.com/news/onq/2018/02/14/snapdragon-x24-worlds-first-announced-2-gbps-lte-modem [Accessed 24 Apr 2019].
  • Alsubaie, N., Youssef, A., and El-Sheimy, N., 2017. Improving the accuracy of direct geo-referencing of smartphone-based mobile mapping systems using relative orientation and scene geometric constraints. Sensors, 17, 2237. doi:10.3390/s17050968
  • Banville, S. and Van Diggelen, F., 2016. Precise positioning using raw GPS measurements from Android smartphones. GPS World, 27, 43–48.
  • Braasch, M.S. and Van Dierendonck, A., 1999. GPS receiver architectures and measurements. Proceedings of the IEEE, 87, 48–64. doi:10.1109/5.736341
  • Chen, K. and Gao, Y., 2005. Real-time precise point positioning using single frequency data. Proceedings of ION GNSS, 1514–1523. Long Beach, CA.
  • Cozzens, T., 2018. u-blox F9 platform designed for high-precision mass market. GPS World. Available from: https://www.gpsworld.com/u-blox-f9-platform-designed-for-high-precision-mass-market/ [Accessed 24 Apr 2019].
  • Crosta, P. and Watterton, T., 2018. Introducing the Galileo PVT app: from assisted GNSS to NeQuick model in Android, European Space Agency, Hague, Netherlands, 1–22.
  • Edwards, B., 2018. The golden age of PDAs. Gold. Age PDAs. Available from: https://www.pcmag.com/feature/364985/the-golden-age-of-pdas [Accessed 22 Apr 2018].
  • EGSA, 2017. GNSS Market Report. EGSA. Available from: https://www.gsa.europa.eu/2017-gnss-market-report [Accessed 22 Jul 2019].
  • EGSA, 2018. World’s first dual-frequency GNSS smartphone hits the market. EGSA. Available from: https://www.gsa.europa.eu/newsroom/news/world-s-first-dual-frequency-gnss-smartphone-hits-market [Accessed 22 Mar 2019].
  • Elsobeiey, M., 2014. Precise point positioning using triple-frequency GPS measurements. The Journal of Navigation, 1–13. doi:10.1017/S0373463314000824
  • Gayatri, A., Reddy, P.V.N., and Hazarathaiah, A., 2016. Handling the biases for improved triple-frequency carrier-phase ambiguity resolution PPP convergence for GNSS, Proceedings of National Conference on Trends in Engineering & Technology - 2K15 (NCTET-2K15), 158–165.
  • Geng, J. and Bock, Y., 2013. Triple-frequency GPS precise point positioning with rapid ambiguity resolution. Journal of Geodesy, 87, 449–460. doi:10.1007/s00190-013-0619-2
  • Geo++ GmbH, 2018. Logging of GNSS raw data on android. Geo++. Available from: http://www.geopp.de/logging-of-gnss-raw-data-on-android/ [Accessed 27 Apr 2019].
  • Gill, M., 2018. GNSS precise point positioning using low-cost GNSS receivers. Thesis (MSc). York University.
  • Gill, M., et al., 2017. Precise Point Positioning (PPP) using low-cost and ultra-low-cost GNSS receivers. Proceeedings of the 30th International Technical Meeting of The Satellite Division of the Institute of Navgation (ION GNSS+ 2017), Portland, Oregon, September 2017, 226–236.
  • Henkel, P. and Günther, C., 2010. Reliable integer ambiguity resolution with multi-frequency code carrier linear combinations. Journal of Global Positioning Systems, 9, 90–103.
  • Héroux, P., et al. 2001. Products and applications for precise point positioning-moving towards real-time. Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004), Long Beach Convention Center, Long Beach, California 1832–1843.
  • Hofmann-Wellenhof, B., Lichtenegger, H., and Wasle, E., 2007. GNSS–global navigation satellite systems: GPS, GLONASS, Galileo, and more. Vienna, Austria: Springer.
  • Humphreys, T.E., et al., 2016. On the feasibility of cm-accurate positioning via a smartphone’s antenna and GNSS chip. 2016 IEEE/ION Position, Location and Navigation Symposium (PLANS), Savannah, Georgia, 232–242.
  • Jan, -S.-S., 2010. Vertical guidance performance analysis of the L1-L5 dual-frequency GPS/WAAS user avionics sensor. Sensors, 10, 2609–2625. doi:10.3390/s100402609
  • Kaplan, E.D. and Hegarty, C., 2017. Understanding GPS/GNSS: principles and applications. Norwood, MA: Artech House.
  • Karimi, H.A., 2011. Universal navigation on smartphones. 1st ed. New York, NY: Springer.
  • Kirkko-Jaakkola, M., et al., 2015. Low-cost precise positioning using a national GNSS network. ION GNSS+ 2015, Session E1. Tampa, FL, USA.
  • Kubo, Y., 2018. G-RitZ logger. Google Play. Available from: https://play.google.com/store/apps/details?id=com.kubolab.gnss.gnssloggerR&hl=en [Accessed 27 Apr 2019].
  • Laurichesse, D. and Blot, A., 2016. Fast PPP convergence using multi-constellation and triple-frequency ambiguity resolution. Proceedings of the 29th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2016), Portland, Oregon, 2082–2088.
  • Leandro, R.F., Santos, M.C., and Langley, R.B., 2011. Analyzing GNSS data in precise point positioning software. GPS solutions, 15, 1–13. doi:10.1007/s10291-010-0173-9
  • Leather, A., 2019. Intel aims to conquer 5G in 2019 with XMM 8160 multi-mode single chip. Forbes. Available from: https://www.forbes.com/sites/antonyleather/2019/02/26/intel-aims-to-conquer-5g-in-2019-with-xmm-8160-multi-mode-single-chip/#3112c98223a4 [Accessed 24 Apr 2019].
  • Li, J., et al., 2013. GNSS multi-carrier fast partial ambiguity resolution strategy tested with real BDS/GPS dual- and triple-frequency observations. GPS solutions, 19, 5–13. doi:10.1007/s10291-013-0360-6
  • Markowitz, M., 2018. STMicroelectronics launches world’s first multi-band GNSS receiver with autonomous-driving precision and automotive safety compliance. STMicroelectronics. Available from: https://www.st.com/content/st_com/en/about/media-center/press-item.html/p4017.html# [Accessed 24 Apr 2018].
  • Misra, P. and Enge, P., 2006. Global positioning system: signals, measurements and performance. 2nd ed. Massachusetts: Ganga-Jamuna Press.
  • Mongredien, C., et al. 2016. Centimeter-level positioning for UAVs and other mass-market applications. Proceedings of the 29th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2016), 1441–1454. Portland, Oregon.
  • Murfin, T., 2017. Big news from broadcom: 30-cm positioning for consumers. GPS World. Available from: https://www.gpsworld.com/big-news-from-broadcom-30-cm-positioning-for-consumers/ [Accessed 24 Apr 2019].
  • Nottingham Scientific Ltd, 2018. NSL launches a new free Android app as part of FLAMINGO – discover rinexON. Flamingo GNSS. Available from: https://www.flamingognss.com/rinexon [Accessed 27 Apr 2019].
  • Odolinski, R. and Teunissen, P.J.G., 2017. Low-cost, 4-system, precise GNSS positioning: a GPS, Galileo, BDS and QZSS ionosphere-weighted RTK analysis. Measurement Science and Technology, 28, 125801. doi:10.1088/1361-6501/aa92eb
  • Odolinski, R. and Teunissen, P.J.G., 2019. An assessment of smartphone and low-cost multi-GNSS single-frequency RTK positioning for low, medium and high ionospheric disturbance periods. Journal of Geodesy, 93, 701–722. doi:10.1007/s00190-018-1192-5
  • Pathak, V., et al., 2003. Mobile handset system performance comparison of a linearly polarized GPS internal antenna with a circularly polarized antenna. IEEE antennas and propagation society international symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No.03CH37450), 666–669. Columbus, OH, USA: IEEE.
  • Pesyna, K.M., Heath, R.W., and Humphreys, T.E., 2014. Centimeter positioning with a smartphone-quality GNSS antenna. Proceedings of the ION GNSS+ Meeting, 1568–1577. Tampa, FL.
  • Riley, S., et al., 2018. Positioning with android: GNSSobservables. GPS World, 29, 14.
  • Robustelli, U., Baiocchi, V., and Pugliano, G., 2019. Assessment of dual frequency GNSS observations from a Xiaomi Mi 8 android smartphone and positioning performance analysis. Electronics, 8, 91. doi:10.3390/electronics8010091
  • Seepersad, G., 2012. Reduction of initial convergence period in GPS PPP data processing. Thesis (MSc). York University.
  • Seepersad, G. and Bisnath, S., 2012. Reduction of precise point positioning convergence period. Proceedings of the 25th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2012), Nashville, TN, September 2012, 3742–3752.
  • Seepersad, G. and Bisnath, S., 2014a. Reduction of PPP convergence period through pseudorange multipath and noise mitigation. GPS Solutions, 19, 369–379. doi:10.1007/s10291-014-0395-3
  • Seepersad, G. and Bisnath, S., 2014b. Challenges in assessing PPP performance. Journal of Applied Geodesy, 8, 205–222.
  • Sullivan, M., 2012. A brief history of GPS. PCWorld. Available from: https://www.pcworld.com/article/2000276/a-brief-history-of-gps.html [Accessed 23 Apr 2019].
  • Sunkevic, M., 2017. Using GNSS raw measurements on android devices – Tutorial part I. European GNSS Agency, 99. doi:10.2878/449581
  • Tang, W., et al., 2014. Triple-frequency carrier ambiguity resolution for Beidou navigation satellite system. GPS Solutions, 18, 335–344. doi:10.1007/s10291-013-0333-9
  • van Diggelen, F. and Khider, M., 2018. GPS measurement tools. Github. Available from: https://github.com/google/gps-measurement-tools/tree/master/GNSSLogger [Accessed 27 Apr 2019].
  • Viken, A., 2010. The history of personal digital assistants 1980 – 2000. Agile Mobil. Available from: https://web.archive.org/web/20131030153659/http://agilemobility.net/2009/04/the-history-of-personal-digital-assistants1/ [Accessed 23 Apr 2019].
  • Yoon, D., et al., 2016. Position accuracy improvement by implementing the DGNSS-CP algorithm in smartphones. Sensors, 16, 910. doi:10.3390/s16122100
  • Zavoli, W. and Bloch, G., 1990. Etak navigator modification. California: U.S. Army Corps of Engineers.
  • Zhang, X., et al., 2018. Quality assessment of GNSS observations from an Android N smartphone and positioning performance analysis using time-differenced filtering approach. GPS Solutions, 22. doi:10.1007/s10291-018-0736-8
  • Zumberge, J.F., et al., 1997. Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research: Solid Earth 1978–2012, 102, 5005–5017. doi:10.1029/96JB03860

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.