2,515
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Comparison of the strip- and block-wise aerial triangulation using different exterior orientation parameters weights

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Ballhorn, U., et al., 2009. Derivation of burn scar depths and estimation of carbon emissions with LIDAR in Indonesian peatlands. Proceedings of the National Academy of Sciences, 106 (50), 21213–21218. doi:10.1073/pnas.0906457106
  • Baselga, S., 2007. Global optimization solution of robust estimation. Journal of Surveying Engineering, 133 (3), 123–128. doi:10.1061/(ASCE)0733-9453(2007)133:3(123)
  • Bjerhammar, A., 1973. A theory of errors and generalized inverse matrices. Amsterdam, New York: Elsevier Scientific Publishing Co.
  • Blázquez, M. and Colomina, I., 2012. Relative INS/GNSS aerial control in integrated sensor orientation: models and performance. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 120–133. doi:10.1016/j.isprsjprs.2011.11.003
  • Copernicus Europe’s eyes on Earth, 2020. Land monitoring service. Available from: https://land.copernicus.eu/ [Accessed 08 Sep 2020].
  • Cramer, M., 1999. Direct geocoding: is aerial triangulation obsolete. In: Fritsch and Spiller, eds. Photographic week 1999. Berline, Germany: Heidelberg Wichmann, 59–70.
  • Cramer, M., 2001. Genauigkeitsuntersuchungen zur GPS-INS-Integration in der Aerophotogrammetrie. Verlag der Bayerischen Akademie der Wissenschaften in Kommission bei der C.H. Beck'schen Verlagsbuchhandlung.
  • Cramer, M., Stallmann, D., and Haala, N., 2000. Direct georeferencing using GPS/inertial exterior orientations for photogrammetric applications. International Archives of Photogrammetry and Remote Sensing, 33 (B3/1; PART 3), 198–205.
  • Dell Acqua, F., Gamba, P., and Mainardi, A., 2001. Digital terrain models in dense urban areas. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 34 (3/W4), 195–202.
  • El-Ashmawy, K.L., 2018. Photogrammetric block adjustment without control points. Geodesy and Cartography, 44 (1), 6–13. doi:10.3846/gac.2018.880
  • Estornell, J., et al., 2011. Analysis of the factors affecting LiDAR DTM accuracy in a steep shrub area. International Journal of Digital Earth, 4 (6), 521–538. doi:10.1080/17538947.2010.533201
  • Gerke, M., 2009. Dense matching in high resolution oblique airborne images. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 38 (3/W4), 77–82.
  • Gerke, M., 2011. Using horizontal and vertical building structure to constrain indirect sensor orientation. ISPRS Journal of Photogrammetry and Remote Sensing, 66 (3), 307–316. doi:10.1016/j.isprsjprs.2010.11.002
  • Gruen, A., 2012. Development and status of image matching in photogrammetry. The Photogrammetric Record, 27 (137), 36–57. doi:10.1111/j.1477-9730.2011.00671.x
  • Gruszczyński, W., Matwij, W., and Ćwiąkała, P., 2017. Comparison of low-altitude UAV photogrammetry with terrestrial laser scanning as data-source methods for terrain covered in low vegetation. ISPRS Journal of Photogrammetry and Remote Sensing, 126, 168–179. doi:10.1016/j.isprsjprs.2017.02.015
  • Gülch, E., 2012. Photogrammetric measurements in fixed wing UAV imagery. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 39 (B1), 381–386. doi:10.5194/isprsarchives-XXXIX-B1-381-2012
  • Heipke, C., 1999. Automatic aerial triangulation: results of the OEEPE-ISPRS test and current developments. Wichmann: Photogrammetric week, 177–191.
  • Heipke, C., Jacobsen, K., and Wegmann, H., 2002. Analysis of the results of the OEEPE test “Integrated Sensor Orientation”. In: OEEPE Integrated Sensor Orientation Test Report and Workshop Proceedings, Hannover, Germany, Editors.
  • Hodgson, M.E., et al., 2003. An evaluation of LIDAR-and IFSAR-derived digital elevation models in leaf-on conditions with USGS Level 1 and Level 2 DEMs. Remote Sensing of Environment, 84 (2), 295–308. doi:10.1016/S0034-4257(02)00114-1
  • Hohle, J., 2008. Photogrammetric measurements in oblique aerial images. Photogrammetrie Fernerkundung Geoinformation, 2008 (1), 7.
  • Ip, A., El-Sheimy, N., and Mostafa, M., 2007. Performance analysis of integrated sensor orientation. Photogrammetric Engineering and Remote Sensing, 73 (1), 89–97. doi:10.14358/PERS.73.1.89
  • Jensen, J.L. and Mathews, A.J., 2016. Assessment of image-based point cloud products to generate a bare earth surface and estimate canopy heights in a woodland ecosystem. Remote Sensing, 8 (1), 50. doi:10.3390/rs8010050
  • Jouybari, A., et al., 2019. Methods comparison for attitude determination of a lightweight buoy by raw data of IMU. Measurement, 135, 348–354.
  • Jouybari, A., Ardalan, A.A., and Rezvani, M.H., 2017. Experimental comparison between Mahoney and Complementary sensor fusion algorithm for attitude determination by raw sensor data of Xsens IMU on buoy. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 497–502.
  • Kerner, S., Kaufman, I., and Raizman, Y., 2016. Role of Tie-Points distribution in aerial photography. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 41–44. doi:10.5194/isprsarchives-XL-3-W4-41-2016
  • Kersten, T., Haering, S., and Ag, S.V., 1998. Automatic tie point extraction using the oeepe/isprs test data—the swissphoto investigations. Hamburg: HafenCity Universität Hamburg. (Report for the pilot center of the oeepe/isprs test, Photogrammetrie & Laserscanning).
  • Kiraci, A.C. and Toz, G., 2016. Theoretical analysis of positional uncertainty in direct georeferencing. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 41 (p), 1221.
  • Konecny, K., et al., 2016. Variable carbon losses from recurrent fires in drained tropical peatlands. Global Change Biology, 22 (4), 1469–1480. doi:10.1111/gcb.13186
  • Kraus, K., 2007. Photogrammetry – geometry from images and laser scans. 2nd ed. Vienna, Austria: de Gruyter.
  • Kruck, E., 2001. Combined IMU and sensor calibration with BINGO-F. In: Integrated Sensor Orientation, Proc. of the OEEPE Workshop, Hannover, Germany, March.
  • Lantmateriet, 2020. Elevation data - National elevation model. Available from: https://www.lantmateriet.se/sv/Kartor-och-geografisk-information/geodataprodukter/stodsidor/hojddata—nationell-hojdmodell/# [Accessed 14 Sep 2020].
  • Lembicz, B.W., 2006. Minimizing ground control when gps photogrammetry isn’t practical. In: ASPRS 2006 Annual Conference, Reno, Nevada, May, 1–5.
  • Madani, M. and Mostafa, M.M.R., 2001. ISAT direct exterior orientation QA/QC strategy using POS data. In: Proceedings of OEEPE Workshop: Integrated Sensor Orientation, September, Hanover, Germany, 17–18.
  • Madani, M. and Shkolnikov, I., 2005. Dynamic drift model for GPS/INS post-processed trajectory of frame camera. In: ISPRS Hanover Workshop, Germany.
  • Mesas-Carrascosa, F.J., et al., 2014. Positional quality assessment of orthophotos obtained from sensors onboard multi-rotor UAV platforms. Sensors, 14 (12), 22394–22407. doi:10.3390/s141222394
  • Mostafa, M.M., Hutton, J., and Lithopoulos, E., 2001a. Airborne direct georeferencing of frame imagery: an error budget. In: Proceedings of the 3rd International Symposium on Mobile Mapping Technology (MMS2001), Cairo, Egypt, January.
  • Mostafa, M.R. and Hutton, J., 2001b. Airborne kinematic positioning and attitude determination without base stations. In: Proceedings, International Symposium on Kinematic Systems in Geodesy, Geomatics, and Navigation (KIS 2001), June, Banff, Alberta, Canada.
  • Nframes, 2020. Sure aerial - The solution for city and countrywide mapping with aerial imagery. Available from: https://www.nframes.com/products/sure-aerial/ [Accessed 06 Nov 2020].
  • Osada, E., 2001. Geodesy. Wrocław: Wroclaw University of Science and Technology Publishing. (In Polish).
  • Pfeifer, N., Glira, P., and Briese, C., 2012. Direct georeferencing with on board navigation components of light weight UAV platforms. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 39, 487–492. doi:10.5194/isprsarchives-XXXIX-B7-487-2012
  • Rahmayudi, A. and Rizaldy, A., 2016. Comparison of semi automatic DTM from image matching with DTM from Lidar. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 41, 373–380.
  • Reddy, A.D., et al., 2015. Quantifying soil carbon loss and uncertainty from a peatland wildfire using multi-temporal LiDAR. Remote Sensing of Environment, 170, 306–316. doi:10.1016/j.rse.2015.09.017
  • Rizaldy, A. and Firdaus, W., 2012. Direct georeferencing: A new standard in photogrammetry for high accuracy mapping. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 39, B1.
  • Salach, A., et al., 2018. Accuracy assessment of point clouds from LidaR and dense image matching acquired using the UAV platform for DTM creation. ISPRS International Journal of Geo-Information, 7 (9), 342. doi:10.3390/ijgi7090342
  • Scherzinger, B.M., 1996. Inertial navigator error models for large heading uncertainty. In: Proceedings of Position, Location and Navigation Symposium-PLANS’96. Atlanta, GA, IEEE, April, 477–484.
  • Schmitz, M., et al., 2001. Benefit of Rigorous Modeling of GPS in Combined AT/GPS/IMU-Bundle Block Adjustment. In: OEEPE Workshop on Integrated Sensor Orientation, Organisation Europene d’Etudes Photogrammtriques Exprimentales/European Organization for Experimental Photogrammetric Research (OEEPE), Hannover, September.
  • Seifert, E., et al., 2019. Influence of drone altitude, image overlap, and optical sensor resolution on multi-view reconstruction of forest images. Remote Sensing, 11 (10), 1252. doi:10.3390/rs11101252
  • Serifoglu, C., Gungor, O., and Yilmaz, V., 2016. Performance evaluation of different ground filtering algorithms for UAV-based point clouds. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 41, 245–251.
  • Shi, J., et al., 2017. GPS real-time precise point positioning for aerial triangulation. GPS Solutions, 21 (2), 405–414. doi:10.1007/s10291-016-0532-2
  • Simpson, J.E., Smith, T.E., and Wooster, M.J., 2017. Assessment of errors caused by forest vegetation structure in airborne LiDAR-derived DTMs. Remote Sensing, 9 (11), 1101. doi:10.3390/rs9111101
  • Snavely, N., Seitz, S.M., and Szeliski, R., 2008. Modeling the world from internet photo collections. International Journal of Computer Vision, 80 (2), 189–210. doi:10.1007/s11263-007-0107-3
  • Stöcker, C., et al., 2017. Quality assessment of combined IMU/GNSS data for direct georeferencing in the context of UAV-based mapping. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 355.
  • Terrasolid, 2020. TerraScan – software for LiDAR data processing and 3D vector data creation. Available from: http://www.terrasolid.com/products/terrascanpage.php [Accessed 06 Nov 2020].
  • Tomaštík, J., et al., 2017. Accuracy of photogrammetric UAV-based point clouds under conditions of partially-open forest canopy. Forests, 8 (5), 151. doi:10.3390/f8050151
  • Triggs, B., et al., 1999. Bundle adjustment—a modern synthesis. In: International workshop on vision algorithms, September. Berlin, Heidelberg: Springer, 298–372.
  • Trimble, 2015. MATCH-AT reference manual. Germany: Trimble inpho.
  • Truong Giang, N., et al., 2018. Second iteration of photogrammetric processing to refine image orientation with improved tie-points. Sensors, 18 (7), 2150. doi:10.3390/s18072150
  • Tsai, V.J., Kao, J.S., and Chen, C.N., 2006. On GPS and GPS-RTK assisted aerotriangulation. In: Proceedings of ASPRS 2006 Annual Conference. Reno, Nevada: ASPRS, 1–10.
  • Wallace, L., et al., 2016. Assessment of forest structure using two UAV techniques: A comparison of airborne laser scanning and structure from motion (SfM) point clouds. Forests, 7 (3), 62. doi:10.3390/f7030062
  • Wierzbicki, D., 2017. Determination of Shift/Bias in digital aerial triangulation of UAV imagery sequences. In: IOP Conference Series: Earth and Environmental Science Vol. 95, No. 3, December. Prague, Czech Republic, IOP Publishing, 032033.
  • Xie, L., et al., 2016. An asymmetric re-weighting method for the precision combined bundle adjustment of aerial oblique images. ISPRS Journal of Photogrammetry and Remote Sensing, 117, 92–107. doi:10.1016/j.isprsjprs.2016.03.017
  • Yastikli, N., Toth, C., and Grejner-Brzezinska, D.A., 2007. In-situ camera and boresight calibration with LiDAR Data. In: Proc. The Fifth International Symposium on Mobile Mapping Technology, MMT, Padua, Italy, Vol. 7.
  • Yuan, X., et al., 2009. The application of GPS precise point positioning technology in aerial triangulation. ISPRS Journal of Photogrammetry and Remote Sensing, 64 (6), 541–550. doi:10.1016/j.isprsjprs.2009.03.006
  • Zach, C., 2014. Robust bundle adjustment revisited. In: European Conference on Computer Vision, September. Cham: Springer, 772–787.
  • Zhang, Y., Hu, B., and Zhang, J., 2011. Relative orientation based on multi-features. ISPRS Journal of Photogrammetry and Remote Sensing, 66 (5), 700–707. doi:10.1016/j.isprsjprs.2011.06.001