472
Views
4
CrossRef citations to date
0
Altmetric
Research Papers

Spatial mapping of winter wheat using C-band SAR (Sentinel-1A) data and yield prediction in Gorakhpur district, Uttar Pradesh (India)

ORCID Icon &

References

  • Ban, Y. and Jacob, A., 2013. Object-based fusion of multitemporal multiangle ENVISAT ASAR and HJ-1B multispectral data for urban land-cover mapping. IEEE Transactions on Geoscience and Remote Sensing, 51 (4), 1998–2006. doi:10.1109/TGRS.2012.2236560
  • Bar, S., Parida, B.R., and Pandey, A.C., 2020. Landsat-8 and Sentinel-2 based forest fire burn area mapping using machine learning algorithms on GEE cloud platform over Uttarakhand, Western Himalaya. Remote Sensing Applications: Society and Environment, 18, 100324. doi:10.1016/j.rsase.2020.100324
  • Breiman, L., 2001. Random forests. Machine Learning, 45, 5–32. doi:10.1023/A:1010933404324
  • Canisius, F., et al., 2018. Tracking crop phenological development using multi-temporal polarimetric Radarsat-2 data. Remote Sensing of Environment, 210, 508–518. doi:10.1016/j.rse.2017.07.031
  • Directorate of Economics & Statistics, DAC&FW (DES), 2020. Agricultural statistics at a glance. Ministry of Agriculture, Government of India. Available from: https://eands.dacnet.nic.in
  • Du, P., et al., 2015. Random forest and rotation forest for fully polarized SAR image classification using polarimetric and spatial features. ISPRS Journal of Photogrammetry and Remote Sensing, 105, 38–53. doi:10.1016/j.isprsjprs.2015.03.002
  • FAO, 2020. The Food and Agriculture Organization of the United Nations, Statistics Division (ESS). Rome, Italy. Available from: http://www.fao.org/faostat/en/#home
  • Ferrazzoli, P., Guerriero, L., and Schiavon, G., 1999. Experimental and model investigation on radar classification capability. IEEE Transactions on Geoscience and Remote Sensing, 37 (2), 960–968. doi:10.1109/36.752214
  • Ferrazzoli, P., et al., 1992. Sensitivity of microwave measurements to vegetation biomass and soil moisture content: a case study. IEEE Transactions on Geoscience and Remote Sensing, 30 (4), 750–756. doi:10.1109/36.158869
  • Foley, W.J., et al., 1998. Ecological applications of near infrared reflectance spectroscopy. Oecologia, 116 (3), 293–305. doi:10.1007/s004420050591
  • Forkuor, G., et al., 2014. Integration of optical and synthetic aperture radar imagery for improving crop mapping in Northwestern Benin, West Africa. Remote Sensing, 6 (7), 6472–6499. doi:10.3390/rs6076472
  • Godfray, H.C.J., et al. 2010. Food security: the challenge of feeding 9 billion people. Science, 327 (5967), 812–818. doi:10.1126/science.1185383
  • He, L., et al., 2016. Polarimetric analysis of radar backscatter from ground-based scatterometers and wheat biomass monitoring with advanced synthetic aperture radar images. Journal of Applied Remote Sensing, 10 (2), 026008. doi:10.1117/1.JRS.10.026008
  • Jia, M., et al., 2013. Multitemporal radar backscattering measurement of wheat fields using multifrequency (L, S, C, and X) and full-polarization. Radio Science, 48 (5), 471–481. doi:10.1002/rds.20048
  • Jin, Z., et al., 2019. Smallholder maize area and yield mapping at national scales with Google earth engine. Remote Sensing of Environment, 228, 115–128. doi:10.1016/j.rse.2019.04.016
  • Kim, Y., et al., 2014. Retrieval of wheat growth parameters with radar vegetation indices. IEEE Geoscience and Remote Sensing Letters, 11 (4), 808–812. doi:10.1109/LGRS.2013.2279255
  • Lobell, D.B., 2013. The use of satellite data for crop yield gap analysis. Field Crops Research, 143, 56–64. doi:10.1016/j.fcr.2012.08.008
  • Macelloni, G., et al., 2001. The relationship between the backscattering coefficient and the biomass of narrow and broad leaf crops. IEEE Transactions on Geoscience and Remote Sensing, 39 (4), 873–884. doi:10.1109/36.917914
  • Mansaray, L.R., et al., 2017. Evaluating the potential of temporal Sentinel-1A data for paddy rice discrimination at local scales. Remote Sensing Letters, 8 (10), 967–976. doi:10.1080/2150704X.2017.1331472
  • Mattia, F., et al., 2003. Multitemporal c-band radar measurements on wheat fields. IEEE Transactions on Geoscience and Remote Sensing, 41 (7), 1551–1560. doi:10.1109/TGRS.2003.813531
  • McNairn, H., Hochheim, K., and Rabe, N., 2004. Applying polarimetric radar imagery for mapping the productivity of wheat crops. Canadian Journal of Remote Sensing, 30 (3), 517–524. doi:10.5589/m03-068
  • McNairn, H., et al., 2014. Early season monitoring of corn and soybeans with TerraSAR-X and RADARSAT-2. International Journal of Applied Earth Observation and Geoinformation, 28, 252–259. doi:10.1016/j.jag.2013.12.015
  • Mishra, N.K., et al., 2017. Rice cultivation monitoring and acreage estimation using RADARSAT SAR images in Jharkhand, India. Suresh Gyan Vihar University Journal of Climate Change and Water, 4, 1–8.
  • NRSC, 2019. Natural resource census – land use/land cover database for dissemination through Bhuvan, LUCMD, LRUMG, RSAA, National Remote Sensing Centre (NRSC), ISRO, Hyderabad.
  • Onojeghuo, A.O., et al., 2018. Mapping paddy rice fields by applying machine learning algorithms to multi-temporal Sentinel-1A and Landsat data. International Journal of Remote Sensing, 39 (4), 1042–1067. doi:10.1080/01431161.2017.1395969
  • Paloscia, S., Macelloni, G., and Pampaloni, P., The relations between backscattering coefficient and biomass of narrow and wide leaf crops. In: Proceedings of the 1998 IEEE international geoscience and remote sensing symposium proceedings, 6–10 July 1998. Seattle,WA, Vol. 1, 100–102.
  • Parida, B.R., Kumar, A., and Ranjan, A.K., 2021. Crop types discrimination and yield prediction using Sentinel–2 data and AquaCrop model in Hazaribagh district, Jharkhand. KN - Journal of Cartography and Geographic Information. doi:10.1007/s42489-021-00073-4
  • Parida, B.R. and Mandal, S.P., 2020. Polarimetric decomposition methods for LULC mapping using ALOS L-band PolSAR data in western parts of Mizoram, Northeast India. SN Applied Sciences, 2 (6), 1049. doi:10.1007/s42452-020-2866-1
  • Parida, B.R. and Oinam, B., 2015. Unprecedented drought in North East India compared to Western India. Current Science, 109 (11), 2121–2126. doi:10.18520/cs/v109/i11/2121-2126
  • Parida, B.R., Pandey, A.C., and Patel, N.R., 2020. Greening and browning trends of vegetation in india and their responses to climatic and non-climatic drivers. Climate, 8 (8), 1–29. doi:10.3390/cli8080092
  • Parida, B.R. and Ranjan, A.K., 2019. Wheat acreage mapping and yield prediction using Landsat-8 OLI satellite data: a case study in Sahibganj province, Jharkhand (India). Remote Sensing in Earth Systems Sciences, 2 (2–3), 96–107. doi:10.1007/s41976-019-00015-9
  • Patel, P., et al., 2006. Comparative evaluation of the sensitivity of multi‐polarized multi‐frequency SAR backscatter to plant density. International Journal of Remote Sensing, 27 (2), 293–305. doi:10.1080/01431160500214050
  • Ranjan, A.K. and Parida, B.R., 2019. Paddy acreage mapping and yield prediction using sentinel-based optical and SAR data in Sahibganj district, Jharkhand (India). Spatial Information Research, 27 (4), 399–410. doi:10.1007/s41324-019-00246-4
  • Ranjan, A.K. and Parida, B.R., 2020a. Estimating biochemical parameters of paddy using satellite and near-proximal sensor data in Sahibganj province, Jharkhand (India). Remote Sensing Applications: Society and Environment, 18, 100293. doi:10.1016/j.rsase.2020.100293
  • Ranjan, A.K. and Parida, B.R., 2020b. Predicting paddy yield at spatial scale using optical and Synthetic Aperture Radar (SAR) based satellite data in conjunction with field-based Crop Cutting Experiment (CCE) data. International Journal of Remote Sensing, 42 (6), 2046–2071. doi:10.1080/01431161.2020.1851063
  • Satalino, G., et al., 2009. Wheat crop mapping by using ASAR AP data. IEEE Transactions on Geoscience and Remote Sensing, 47 (2), 527–530. doi:10.1109/TGRS.2008.2008026
  • Skriver, H., 2012. Crop classification by multitemporal C- and L-band single- and dual-polarization and fully polarimetric SAR. IEEE Transactions on Geoscience and Remote Sensing, 50 (6), 2138–2149. doi:10.1109/TGRS.2011.2172994
  • Sonobe, R., et al., 2014. Random forest classification of crop type using multi-temporal TerraSAR-X dual-polarimetric data. Remote Sensing Letters, 5 (2), 157–164. doi:10.1080/2150704X.2014.889863
  • Vapnik, V.N., 1998. Statistical learning theory. New York, NY: Wiley.
  • Villa, P., et al., 2015. In-season mapping of crop type with optical and X-band SAR data. Remote Sensing, 7 (10), 12859–12886. doi:10.3390/rs71012859
  • Vreugdenhil, M., et al., 2018. Sensitivity of Sentinel-1 backscatter to vegetation dynamics: an Austrian case study. Remote Sensing, 10 (9), 1396. doi:10.3390/rs10091396
  • Wang, J., et al., 2019. Field-scale rice yield estimation using Sentinel-1A Synthetic Aperture Radar (SAR) data in coastal saline region of Jiangsu province, China. Remote Sensing, 11 (19), 2274. doi:10.3390/rs11192274
  • Wang, X.Y., et al., 2016. Fusion of HJ1B and ALOS PALSAR data for land cover classification using machine learning methods. International Journal of Applied Earth Observation and Geoinformation, 52, 192–203. doi:10.1016/j.jag.2016.06.014
  • Wiseman, G., et al., 2014. RADARSAT-2 polarimetric SAR response to crop biomass for agricultural production monitoring. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7 (11), 4461–4471. doi:10.1109/JSTARS.2014.2322311

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.