94
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Integrated mixture model and ensemble learning geographic object-based image analysis for road network extraction

ORCID Icon &
Pages 265-285 | Received 13 Feb 2023, Accepted 17 May 2023, Published online: 01 Jun 2023

References

  • Abdollahi, A., et al., 2020. Deep learning approaches applied to remote sensing datasets for road extraction: a state-of-the-art review. Remote Sensing, 12 (9), 1444. doi:10.3390/rs12091444
  • Abdollahi, A. and Pradhan, B., 2021. Integrated technique of segmentation and classification methods with connected components analysis for road extraction from orthophoto images. Expert Systems with Applications, 176, 114908. doi:10.1016/j.eswa.2021.114908
  • Abdollahi, A., Pradhan, B., and Alamri, A., 2022. SC-roaddeepnet: a new shape and connectivity-preserving road extraction deep learning-based network from remote sensing data. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–15. doi:10.1109/TGRS.2022.3143855
  • Bakhtiari, H.R.R., Abdollahi, A., and Rezaeian, H., 2017. Semi-automatic road extraction from digital images. The Egyptian Journal of Remote Sensing and Space Science, 20 (1), 117–123. doi:10.1016/j.ejrs.2017.03.001
  • Blaschke, T., et al., 2014. Geographic object-based image analysis–towards a new paradigm. ISPRS Journal of Photogrammetry and Remote Sensing, 87, 180–191. doi:10.1016/j.isprsjprs.2013.09.014
  • Blekas, K., et al., 2005. A spatially constrained mixture model for image segmentation. IEEE Transactions on Neural Networks, 16 (2), 494–498. doi:10.1109/TNN.2004.841773
  • Chaki, J. and Dey, N., 2020. Texture feature extraction techniques for image recognition. Springer Singapore.
  • Chen, G., et al., 2018. Geographic object-based image analysis (GEOBIA): emerging trends and future opportunities. GIScience & Remote Sensing, 55 (2), 159–182. doi:10.1080/15481603.2018.1426092
  • Chen, Z., et al., 2019. Corse-to-fine road extraction based on local Dirichlet mixture models and multiscale-high-order deep learning. IEEE Transactions on Intelligent Transportation Systems, 21 (10), 4283–4293. doi:10.1109/TITS.2019.2939536
  • Chen, Z., et al., 2022. Road extraction in remote sensing data: a survey. International Journal of Applied Earth Observation and Geoinformation, 112, 102833. doi:10.1016/j.jag.2022.102833
  • Dai, L., Zhang, G., and Zhang, R., 2023. RADANet: road augmented deformable attention network for road extraction from complex high-resolution remote-sensing images. IEEE Transactions on Geoscience and Remote Sensing, 61, 1–13. doi:10.1109/TGRS.2023.3237561
  • Das, S., Mirnalinee, T.T., and Varghese, K., 2011. Use of salient features for the design of a multistage framework to extract roads from high-resolution multispectral satellite images. IEEE Transactions on Geoscience and Remote Sensing, 49 (10), 3906–3931. doi:10.1109/TGRS.2011.2136381
  • Duda, R.O. and Hart, P.E., 2006. Pattern classification. India: John Wiley & Sons.
  • Guo, Q. and Wang, Z., 2020. A self-supervised learning framework for road centerline extraction from high-resolution remote sensing images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 4451–4461. doi:10.1109/JSTARS.2020.3014242
  • Gupta, A., Watson, S., and Yin, H., 2021. Deep learning-based aerial image segmentation with open data for disaster impact assessment. Neurocomputing, 439, 22–33. doi:10.1016/j.neucom.2020.02.139
  • Hu, C., et al., 2018. Model-based segmentation of image data using spatially constrained mixture models. Neurocomputing, 283, 214–227. doi:10.1016/j.neucom.2017.12.033
  • Kanevski, M., Timonin, V., and Pozdnukhov, A., 2009. Machine learning for spatial environmental data: theory, applications, and software. 1st ed. Florida: EPFL Press. doi:10.1201/9781439808085
  • Kearney, S.P., et al., 2020. Maintaining accurate, current, rural road network data: an extraction and updating routine using RapidEye, participatory GIS, and deep learning. International Journal of Applied Earth Observation and Geoinformation, 87, 102031. doi:10.1016/j.jag.2019.102031
  • Kotaridis, I. and Lazaridou, M., 2021. Remote sensing image segmentation advances: a meta-analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 173, 309–322. doi:10.1016/j.isprsjprs.2021.01.020
  • Kroese, D.P., et al., 2019. Data science and machine learning: mathematical and statistical methods. 1st ed. Florida: Chapman and Hall/CRC. doi:10.1201/9780367816971
  • Li, X., et al., 2020. Topology-enhanced urban road extraction via a geographic feature-enhanced network. IEEE Transactions on Geoscience and Remote Sensing, 58 (12), 8819–8830. doi:10.1109/TGRS.2020.2991006
  • Lian, R., et al., 2020. Road extraction methods in high-resolution remote sensing images: a comprehensive review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 5489–5507. doi:10.1109/JSTARS.2020.3023549
  • Li, J., Hu, Q., and Ai, M., 2018. Unsupervised road extraction via a Gaussian mixture model with object-based features. International Journal of Remote Sensing, 39 (8), 2421–2440. doi:10.1080/01431161.2018.1425563
  • Liu, R., et al., 2019. A semi-supervised high-level feature selection framework for road centerline extraction. IEEE Geoscience and Remote Sensing Letters, 17 (5), 894–898. doi:10.1109/LGRS.2019.2931928
  • Lu, X., et al., 2019. Multi-scale and multi-task deep learning framework for automatic road extraction. IEEE Transactions on Geoscience and Remote Sensing, 57 (11), 9362–9377. doi:10.1109/TGRS.2019.2926397
  • Maboudi, M., et al., 2017. Object-based road extraction from satellite images using ant colony optimization. International Journal of Remote Sensing, 38 (1), 179–198. doi:10.1080/01431161.2016.1264026
  • Maboudi, M., et al., 2018. Integrating fuzzy object based image analysis and ant colony optimization for road extraction from remotely sensed images. ISPRS Journal of Photogrammetry and Remote Sensing, 138, 151–163. doi:10.1016/j.isprsjprs.2017.11.014
  • Mantripragada, K. and Qureshi, F.Z., 2022. Evaluation of Dirichlet process Gaussian mixtures for segmentation on noisy hyperspectral images. Computer Vision and Pattern Recognition, 1–12. arXiv preprint arXiv:2203.02820.
  • Martins, V.S., et al., 2020. Exploring multiscale object-based convolutional neural network (multi-OCNN) for remote sensing image classification at high spatial resolution. ISPRS Journal of Photogrammetry and Remote Sensing, 168, 56–73. doi:10.1016/j.isprsjprs.2020.08.004
  • Mena, J.B. and Malpica, J.A., 2005. An automatic method for road extraction in rural and semi-urban areas starting from high resolution satellite imagery. Pattern Recognition Letters, 26 (9), 1201–1220. doi:10.1016/j.patrec.2004.11.005
  • Miao, Z., et al., 2014. A semi-automatic method for road centerline extraction from VHR images. IEEE Geoscience and Remote Sensing Letters, 11 (11), 1856–1860. doi:10.1109/LGRS.2014.2312000
  • Miao, Z., et al., 2015. An object-based method for road network extraction in VHR satellite images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8 (10), 4853–4862. doi:10.1109/JSTARS.2015.2443552
  • Minaee, S., et al., 2021. Image segmentation using deep learning: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–1. doi:10.1109/TPAMI.2021.3059968
  • Mnih, V., 2013. Machine learning for aerial image labeling. Canada: University of Toronto.
  • Pan, Y., et al., 2018. Detection of asphalt pavement potholes and cracks based on the unmanned aerial vehicle multispectral imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11 (10), 3701–3712. doi:10.1109/JSTARS.2018.2865528
  • Ramola, A., Shakya, A.K., and Van Pham, D., 2020. Study of statistical methods for texture analysis and their modern evolutions. Engineering Reports, 2 (4), e12149. doi:10.1002/eng2.12149
  • Song, W., et al., 2017. Unsupervised PolSAR image classification and segmentation using Dirichlet process mixture model and Markov random fields with similarity measure. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10 (8), 3556–3568. doi:10.1109/JSTARS.2017.2684301
  • Soni, P.K., Rajpal, N., and Mehta, R., 2020. Semiautomatic road extraction framework based on shape features and LS-SVM from high-resolution images. Journal of the Indian Society of Remote Sensing, 48 (3), 513–524. doi:10.1007/s12524-019-01077-4
  • Valero, S., et al., 2010. Advanced directional mathematical morphology for the detection of the road network in very high resolution remote sensing images. Pattern Recognition Letters, 31 (10), 1120–1127. doi:10.1016/j.patrec.2009.12.018
  • Wiedemann, C., 2003. External evaluation of road networks. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 34 (3/W8), 93–98.
  • Yadav, D.P., et al., 2020. Automatic urban road extraction from high resolution satellite data using object based image analysis: a fuzzy classification approach. Journal of Remote Sensing & GIS, 9 (1), 279.
  • Yang, X., et al., 2019. Road detection and centerline extraction via deep recurrent convolutional neural network U-Net. IEEE Transactions on Geoscience and Remote Sensing, 57 (9), 7209–7220. doi:10.1109/TGRS.2019.2912301
  • Yang, Z., et al., 2022b. TransRoadNet: a novel road extraction method for remote sensing images via combining high-level semantic feature and context. IEEE Geoscience and Remote Sensing Letters, 19, 1–5.
  • Yang, M., Yuan, Y., and Liu, G., 2022a. SDUNet: road extraction via spatial enhanced and densely connected UNet. Pattern Recognition, 126, 108549. doi:10.1016/j.patcog.2022.108549
  • Zhang, Y., Liu, J., and Shen, W., 2022. A review of ensemble learning algorithms used in remote sensing applications. Applied Sciences, 12 (17), 8654. doi:10.3390/app12178654
  • Zhang, Z., Liu, Q., and Wang, Y., 2018. Road extraction by deep residual u-net. IEEE Geoscience and Remote Sensing Letters, 15 (5), 749–753. doi:10.1109/LGRS.2018.2802944
  • Zhou, Z.H., 2012. Ensemble methods: foundations and algorithms. Florida: CRC press.
  • Zhu, C., et al., 2005. The recognition of road network from high‐resolution satellite remotely sensed data using image morphological characteristics. International Journal of Remote Sensing, 26 (24), 5493–5508. doi:10.1080/01431160500300354

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.