97
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

BDS-3 phase bias products of new frequency B1C&B2a: ambiguity resolution and positioning accuracy evaluation

, , , , &
Pages 527-550 | Received 10 Feb 2023, Accepted 20 Aug 2023, Published online: 12 Sep 2023

References

  • Banville, S., et al., 2020. On the interoperability of IGS products for precise point positioning with ambiguity resolution. Journal of Geodesy, 94 (1). doi:10.1007/s00190-019-01335-w.
  • Cao, X.Y., et al., 2022. BDS-3/GNSS multi-frequency precise point positioning ambiguity resolution using observable-specific signal bias. Measurement, 195, 111134. doi:10.1016/j.measurement.2022.111134.
  • Carrere, L., et al., 2015. Polluter identification with spaceborne radar imagery, AIS and forward drift modeling. Marine Pollution Bulletin, 101 (2), 826–833. doi:10.1016/j.marpolbul.2015.08.006.
  • Chen, J., et al., 2021. Comparison and assessment of long-term performance of BDS-2/BDS-3 satellite atomic clocks. Measurement Science and Technology, 32 (11), 115021. doi:10.1088/1361-6501/ac0b16.
  • Collins, P., et al., 2010. Undifferenced GPS ambiguity resolution using the decoupled clock model and ambiguity datum fixing. Navigation, 57 (2), 123–135. doi:10.1002/j.2161-4296.2010.tb01772.x.
  • Committee, R.S., 2016. RTCM standard 10403.3 differential GNSS (global navigation satellite systems) services-version 3. RTCM Special Committee, (104).
  • Duong, V., et al., 2020. Assessing the performance of multi-frequency GPS, Galileo and BeiDou PPP ambiguity resolution. Journal of Spatial Science, 65 (1), 61–78. doi:10.1080/14498596.2019.1658652.
  • Ge, M., et al., 2008. Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. Journal of Geodesy, 82 (7), 389–399. doi:10.1007/s00190-007-0187-4.
  • Geng, J.H., et al., 2019. A modified phase clock/bias model to improve PPP ambiguity resolution at Wuhan University. Journal of Geodesy, 93 (10), 2053–2067. doi:10.1007/s00190-019-01301-6.
  • Geng, J.H., et al., 2022. GNSS observable-specific phase biases for all-frequency PPP ambiguity resolution. Journal of Geodesy, 96 (2). doi:10.1007/s00190-022-01602-3.
  • Geng, J.H., Yang, S.F., and Guo, J., 2021. Assessing IGS GPS/Galileo/BDS-2/BDS-3 phase bias products with PRIDE PPP-AR. Satellite Navigation, 2 (1). doi:10.1186/s43020-021-00049-9.
  • Guo, J., et al., 2021. Assessment of multi-frequency PPP ambiguity resolution using Galileo and BeiDou-3 signals. Remote Sensing, 13 (23), 4746. doi:10.3390/rs13234746.
  • Khodabandeh, A. and Teunissen, P.J.G., 2019. Integer estimability in GNSS networks. Journal of Geodesy, 93 (9), 1805–1819. doi:10.1007/s00190-019-01282-6.
  • Laurichesse, D., et al., 2009. Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit Determination. Navigation, 56 (2), 135–149. doi:10.1002/j.2161-4296.2009.tb01750.x.
  • Li, J.L., et al., 2020a. Benefits of BDS-3 B1C/B1I/B2a triple-frequency signals on precise positioning and ambiguity resolution. GPS Solutions, 24 (4). doi:10.1007/s10291-020-01016-8.
  • Li, P., et al., 2018a. Three-frequency BDS precise point positioning ambiguity resolution based on raw observables. Journal of Geodesy, 92 (12), 1357–1369. doi:10.1007/s00190-018-1125-3.
  • Li, X., et al., 2018b. Assessment of BDS ambiguity resolution with GEO/IGSO/MEO satellites. Acta Geodetica et Cartographica Sinica, 47 (3), 324–331.
  • Li, X., et al., 2018c. Spatial-temporal characteristic of BDS phase delays and PPP ambiguity resolution with GEO/IGSO/MEO satellites. GPS Solutions, 22 (4). doi:10.1007/s10291-018-0790-2.
  • Li, X., et al., 2020b. BDS multi-frequency PPP ambiguity resolution with new B2a/B2b/B2a + b signals and legacy B1I/B3I signals. Journal of Geodesy, 94 (10), 107. doi:10.1007/s00190-020-01439-8.
  • Li, X., 2021. Research on the key technologies of multi-frequency and multi-constellation GNSS rapid precise positioning. ( PhD). Wuhan University.
  • Li, X., et al., 2022. A unified model of GNSS phase/code bias calibration for PPP ambiguity resolution with GPS, BDS, Galileo and GLONASS multi-frequency observations. GPS Solutions, 26 (3). doi:10.1007/s10291-022-01269-5.
  • Li, X.X., et al., 2018d. Multi-GNSS phase delay estimation and PPP ambiguity resolution: GPS, BDS, GLONASS, Galileo. Journal of Geodesy, 92 (6), 579–608. doi:10.1007/s00190-017-1081-3.
  • Li, X.X., et al., 2020c. The phase and code biases of Galileo and BDS-3 BOC signals: effect on ambiguity resolution and precise positioning. Journal of Geodesy, 94 (1). doi:10.1007/s00190-019-01336-9.
  • Liu, X.X., et al., 2019. Comparison of convergence time and positioning accuracy among BDS, GPS and BDS/GPS precise point positioning with ambiguity resolution. Advances in Space Research, 63 (11), 3489–3504. doi:10.1016/j.asr.2019.02.026.
  • Li, P., Zhang, X.H., and Guo, F., 2017. Ambiguity resolved precise point positioning with GPS and BeiDou. Journal of Geodesy, 91 (1), 25–40. doi:10.1007/s00190-016-0935-4.
  • Montenbruck, O., et al., 2015. GNSS satellite geometry and attitude models. Advances in Space Research, 56 (6), 1015–1029. doi:10.1016/j.asr.2015.06.019.
  • Odijk, D., et al., 2017. PPP-RTK by means of S-system theory: Australian network and user demonstration. Journal of Spatial Science, 62 (1), 3–27. doi:10.1080/14498596.2016.1261373.
  • Office(CSNO), 2019. Definitions and descriptions of BDS/GNSS satellite parameters for high precision application.
  • Petit, G. and Luzum, B.2010. IERS technical note no. 36. IERS Conventions, 179.
  • Psychas, D., Verhagen, S., and Teunissen, P.J.G., 2020. Precision analysis of partial ambiguity resolution-enabled PPP using multi-GNSS and multi-frequency signals. Advances in Space Research, 66 (9), 2075–2093. doi:10.1016/j.asr.2020.08.010.
  • Qi, K., et al., 2022. Performance analysis of BDS-3 FCB estimated by reference station networks over a long time. Mathematics, 10 (19), 3610. doi:10.3390/math10193610.
  • Schaer, S., SINEX BIAS—solution (software/technique) INdependent EXchange format for GNSS BIASes version 1.00. ed. IGS workshop on GNSS biases, Bern, Switzerland, 2016.
  • Schaer, S., et al., 2018. New ambiguity-fixed IGS clock analysis products at CODE. In: IGS workshop. Wuhan,China.
  • Schaer, S., et al., 2021. The CODE ambiguity-fixed clock and phase bias analysis products: generation, properties, and performance. Journal of Geodesy, 95 (7). doi:10.1007/s00190-021-01521-9.
  • Senior, K.L., Ray, J.R., and Beard, R.L., 2008. Characterization of periodic variations in the GPS satellite clocks. GPS Solutions, 12 (3), 211–225. doi:10.1007/s10291-008-0089-9.
  • Shi, J. and Gao, Y., 2014. A comparison of three PPP integer ambiguity resolution methods. GPS Solutions, 18 (4), 519–528. doi:10.1007/s10291-013-0348-2.
  • Sleewagen, J. and Clemente, F., 2018. Quantifying the pilot-data bias on all current GNSS signals and satellites. ed. In: IGS workshop.Wuhan, China.
  • Teunissen, P. and Khodabandeh, A., 2015. Review and principles of PPP-RTK methods. Journal of Geodesy, 89 (3), 217–240. doi:10.1007/s00190-014-0771-3.
  • Villiger, A., et al., 2019. Determination of GNSS pseudo-absolute code biases and their long-term combination. Journal of Geodesy, 93 (9), 1487–1500. doi:10.1007/s00190-019-01262-w.
  • Xie, X., 2020. Precise Orbit and Clock Determination for BDS-3 Satellites Using Inter-satellite Link Observations. ( PhD). Wuhan University.
  • Yu, X.S., et al., 2023. The benefit of B1C/B2a signals for BDS-3 wide-area decimeter-level and centimeter-level point positioning with observable-specific signal bias. Measurement, 214, 112815. doi:10.1016/j.measurement.2023.112815.
  • Zhang, X., et al., 2013. An analysis of time-varying property of widelane carrier phase ambiguity fractional bias. Acta Geodetica et Cartographica Sinica, 42 (6), 798–803,809.
  • Zhang, X.H., et al., 2017. Initial assessment of the COMPASS/BeiDou-3: new-generation navigation signals. Journal of Geodesy, 91 (10), 1225–1240. doi:10.1007/s00190-017-1020-3.
  • Zhang, Z.T., et al., 2019. Initial assessment of BeiDou-3 global navigation satellite system: signal quality, RTK and PPP. GPS Solutions, 23 (4). doi:10.1007/s10291-019-0905-4.
  • Zhang, X. and Li, X., 2010. A new method for zero-differenced interger ambiguity resolution and its application to PPP. Geomatics and Information Science of Wuhan University, 35 (6), 657–660.
  • Zhang, X., Li, P., and Zhu, F., 2012. Estimation and analysis for widelane carrier phase fractional bias of satellite. Geomatics and Information Science of Wuhan University, 37 (10), 1177–1180,1185.
  • Zhu, Y., et al., 2023. Comprehensive performance review of BDS-3 after one-year official operation. Advances in Space Research, 71 (1), 883–899. doi:10.1016/j.asr.2022.08.020.
  • Zhu, Y.X., et al., 2021. Preliminary analysis of the quality and positioning performance of BDS-3 global interoperable signal B1C&B2a. Advances in Space Research, 67 (8), 2483–2490. doi:10.1016/j.asr.2021.01.045.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.