149
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Estimation of natural vegetation phenology metrics using time series EVI over Jharkhand state, India

, , , , , , & show all
Received 25 Jul 2023, Accepted 02 Nov 2023, Published online: 07 Dec 2023

References

  • Atkinson, P.M., et al., 2012. Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology. Remote Sensing of Environment, 123, 400–417. doi:10.1016/j.rse.2012.04.001
  • Atzberger, C., et al., 2014. Phenological metrics derived over the European continent from NDVI3g data and MODIS time series. Remote Sensing, 6 (1), 257–284. doi:10.3390/rs6010257.
  • Atzberger, C. and Eilers, P.H.C., 2011. Evaluating the effectiveness of smoothing algorithms in the absence of ground reference measurements. International Journal of Remote Sensing, 32 (13), 3689–3709. doi:10.1080/01431161003762405.
  • Boojh, R. and Ramakrishnan, P.S., 1983. The growth pattern of two species of schima. Biotropica, 15 (2), 142–147. doi:10.2307/2387960.
  • Bradshaw, C.J.A., Warkentin, I.G., and Sodhi, N.S., 2009. Urgent preservation of boreal carbon stocks and biodiversity. Trends in Ecology and Evolution, 24 (10), 541–548. doi:10.1016/j.tree.2009.03.019.
  • Cleland, E.E., et al., 2007. Shifting plant phenology in response to global change. Trends in Ecology & Evolution, 22 (7), 357–365. doi:10.1016/j.tree.2007.04.003.
  • Dash, J., Jeganathan, C., and Atkinson, P.M., 2010. The use of MERIS terrestrial chlorophyll index to study spatio-temporal variation in vegetation phenology over India. Remote Sensing of Environment, 114 (7), 1388–1402. doi:10.1016/j.rse.2010.01.021.
  • De Wit, A. and Su, B., 2005, Deriving phenological indicators from SPOT-VGT data using the HANTS algorithm. In: 2nd International SPOT-VEGETATION user conference., Antwerp, Belgium, 195–201.
  • Du, Q., et al., 2021. Analysis of asymmetry in diurnal warming and its impact on vegetation phenology in the Qinghai-Tibetan Plateau using MODIS remote sensing data. Journal of Applied Remote Sensing, 2850215 (2), Apr–Jun 10.1117/1.JRS.15.028502.
  • Forest Survey of India’s State of Forest Report (SFR), 2019. Ministry of environment, Forest & Climate Change, Dehradun, India.
  • Huete, A., et al., 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83 (1–2), 195–213. doi:10.1016/S0034-4257(02)00096-2.
  • Jeganathan, C., Dash, J., and Atkinson, P.M., 2010. Characterising the spatial pattern of phenology for the tropical vegetation of India using multi-temporal MERIS chlorophyll data. Landscape Ecology, 25 (7), 1125–1141. doi:10.1007/s10980-010-9490-1.
  • Jeganathan, C. and Nishant, N., 2013. Scrutinising MODIS and GIMMS vegetation indices for extracting growth rhythm of natural vegetation in India. The Journal of the Indian Society of Remote Sensing, 42 (2), 397–408. doi:10.1007/s12524-013-0337-5.
  • Jeong, S.J., et al., 2011. Phenology shifts at start vs. end of growing season in temperate vegetation over the northern Hemisphere for the period 1982–2008. Global Change Biology, 17 (7), 2385–2399. doi:10.1111/j.1365-2486.2011.02397.x.
  • Jiang, P., et al., 2023. Knowledge-informed deep learning for hydrological model calibration: an application to coal creek watershed in Colorado. Hydrology and Earth System Sciences, 27 (14), 2621–2644. doi:10.5194/hess-27-2621-2023.
  • Jung, M., et al., 2011. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. Journal of Geophysical Research, 116. doi:10.1029/2010JG001566.
  • Kendall, M.G., 1975. Rank correlation methods. 4th ed. London, UK: Charles Griffin.
  • Kushwaha, C.P. and Singh, K.P., 2008. India needs phenological stations network. Current Science, 95, 832–834.
  • Lawrence, D., et al., 2018. Technical Description of version 5.0 of the Community Land Model (CLM). https://www2.cesm.ucar.edu/models/cesm2/land/CLM50_Tech_Note.pdf.
  • Liu, S., et al., 2016. Regional-scale winter wheat phenology monitoring using multisensor spatio-temporal fusion in a south central China growing area. Journal of Applied Remote Sensing, 10 (4), 046029. (December). doi:10.1117/1.JRS.10.046029
  • Mann, H.B., 1945. Non-parametric tests against trend. Econometrica, 13 (3), 245–259. doi:10.2307/1907187.
  • Mishra, R.K., et al., 2006. Phenology of species of moist deciduous forest sites of similipal biosphere reserve. Lyonia, 111, 5–17.
  • Moulin, S., et al., 1997. Global-scale assessment of vegetation phenology using NOAA/AVHRR satellite measurements. Journal of Climate, 10 (6), 1154–1170. doi:10.1175/1520-0442(1997)010<1154:GSAOVP>2.0.CO;2.
  • Mudunuru, M.K., et al., 2022. Scalable deep learning for watershed model calibration. Frontiersin Earth Science, 10, 1026479. 2022 Nov 24. doi:10.3389/feart.2022.1026479
  • Newton, P.N., 1988. The structure and phenology of a moist deciduous forest in the central Indian Highlands. Vegetatio, 75 (1–2), 3–16. doi:10.1007/BF00044621.
  • Parmesan, C. and Yohe, G., 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421 (6918), 37–42. doi:10.1038/nature01286.
  • Poveda, G.and Salazar, L.F., 2004. Annual and interannual (ENSO) variability of spatial scaling properties of a vegetation index (NDVI) in Amazonia. Remote Sensing of Environment, 93 (3), 391–401.
  • Priyadarshi, N., et al., 2018. Reconstruction of time series MODIS EVI data using de-noising algorithms. Geocarto International, 33 (10), 1095–1113. doi:10.1080/10106049.2017.1333535.
  • Priyadarshi, N., et al., 2020. Wavelet and non-parametric statistical based approach for long term land cover trend analysis using time series EVI data. Geocarto International, 35 (5), 512–534. doi:10.1080/10106049.2018.1520925.
  • Priyadarshi, N., et al., 2022. Multi-resolution analysis based data mining approach to assess vegetation dynamics in Jharkhand using time series MODIS products. Geocarto International, 37 (25), 9767–9787. doi:10.1080/10106049.2021.2024610.
  • Roerink, G.J. Menenti, M. and Verhoef, W. 2000. Reconstructing cloud free NDVI composites using fourier analysis of time series. International Journal of Remote Sensing, 21 (9), 1911–1917.
  • Sarif, M.O., Jeganathan, C., and Mondal, S., 2017. MODIS-VCF based forest change analysis in the state of Jharkhand. Proceedings of the National Academy of Sciences, India, Section A: Physical Sciences, 87 (4), 751–767. (October–December). doi:10.1007/s40010-017-0446-6.
  • Sen, P.K., 1968. Estimation of regression coefficients based on Kendall’s tau. Journal of the American Statistical Association, 63 (324), 1379–1389. doi:10.1080/01621459.1968.10480934.
  • Singh, B., et al., 2021. Resilience of the central Indian forest ecosystem to rainfall variability in the context of a changing climate. Remote Sensing, 13 (21), 4474. doi:10.3390/rs13214474.
  • Singh, B., et al., 2023. The relationship between central Indian terrestrial vegetation and monsoon rainfall distributions in different hydroclimatic extreme years using time-series satellite data. Theoretical and Applied Climatology, doi:10.1007/s00704-023-04582-2.
  • Singh, B., Jeganathan, C., and Rathore, V.S., 2020. Improved NDVI based proxy leaf-fall indicator to assess rainfall sensitivity of deciduousness in the central Indian forests through remote sensing. Nature-Scientific Reports, 10 (1), 17638. doi:10.1038/s41598-020-74563-2.
  • Singh, K.P. and Kushwaha, C.P., 2005. Paradox of leaf phenology: shorea robusta is a semievergreen species in tropical dry deciduous forests in India. Current Science, 88, 1820–1824.
  • Sun, A.Y., et al., 2021. Explore spatio‐temporal learning of large sample hydrology using graph neural networks. Water Resources Research, 57 (12), e2021WR030394. doi:10.1029/2021WR030394.
  • Sundarapandian, S.M., Chandrasekaran, S., and Swamy, P.S., 2005. Phenological behaviour of selected tree species in tropical forests at Kodayar in the Western Ghats, Tamil Nadu. India, Current Science, 88, 805–810.
  • Wanjing, L., et al., 2021. Comparisons of numerical phenology models and machine learning methods on predicting the spring onset of natural vegetation across the northern Hemisphere. Ecological Indicators, 131 (2021), 108126. doi:10.1016/j.ecolind.2021.108126.
  • Xu, L., et al., 2013. Temperature and vegetation seasonality diminishment over northern lands. Nature Climate Change Letters, 3 (6), 581–586. doi:10.1038/nclimate1836.
  • Zhang, X., et al. (2002). Use of MODIS data to study the relation between climatic spatial variability and vegetation phenology in northern high latitudes. In: IEEE transactions geoscience and remote sensing, 1149–1151. Toronto, Ontario, Canada.
  • Zhao, M., et al., 2013. Plant phenological modeling and its application in global climate change research: overview and future challenges. Environmental Reviews, 21 (1), doi:10.1139/er-2012-0036.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.