100
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Impact assessment of land-use alteration on land surface temperature in Kabul using machine learning algorithm

, &
Received 03 Apr 2024, Accepted 30 May 2024, Published online: 27 Jun 2024

References

  • Abdullah, S., et al. 2022. Investigating the impact of land use/land cover change on present and future land surface temperature (LST) of Chittagong, Bangladesh. Earth Systems and Environment, 6 (1), 221–235. doi:10.1007/S41748-021-00291-W
  • Ahmad, M.N., Shao, Z., and Javed, A., 2023. Modelling land use/land cover (LULC) change dynamics, future prospects, and its environmental impacts based on geospatial data models and remote sensing data. Environmental Science and Pollution Research, 30, 32985–33001. doi:10.1007/S11356-022-24442-2
  • Ariefiandy, A., et al. 2021. Human activities associated with reduced Komodo dragon habitat use and range loss on Flores. Biodiversity and Conservation, 30 (2), 461–479. doi:10.1007/S10531-020-02100-8
  • Artis, D.A. and Carnahan, W.H., 1982. Survey of emissivity variability in thermography of urban areas. Remote Sensing of Environment, 12 (4), 313–329. doi:10.1016/0034-4257(82)90043-8
  • Asif, M., et al. 2023. Modelling of land use and land cover changes and prediction using CA-Markov and Random Forest. Geocarto International, 38. doi:10.1080/10106049.2023.2210532
  • Atef, I., Ahmed, W., and Abdel-Maguid, R.H., 2023. Future land use land cover changes in El-Fayoum governorate: a simulation study using satellite data and CA-Markov model. Stochastic Environmental Research and Risk Assessment, 38, 651–664. doi:10.1007/S00477-023-02592-0
  • Borana, S.L. and Yadav, S.K., 2017. Prediction of land cover changes of Jodhpur City using cellular automata Markov modelling techniques. International Journal of Engineering Science & Computing. 15402. doi:10.13140/RG.2.2.10705.38246
  • Chaturvedi, V., Kuffer, M., and Kohli, D., 2020. Analysing urban development patterns in a conflict zone: a case study of Kabul. Remote Sensing, 12, 3662. doi:10.3390/rs12213662
  • Degefu, M.A., et al. 2022. Regional and urban heat island studies in megacities: a systematic analysis of research methodology. Indoor and Built Environment, 31 (7), 1775–1786. doi:10.1177/1420326X211061491
  • Dutta, D., et al. 2021. Impervious surface growth and its inter-relationship with vegetation cover and land surface temperature in peri-urban areas of Delhi. Urban Climate, 37, 100799. doi:10.1016/j.uclim.2021.100799
  • Fatemi, M. and Narangifard, M., 2019. Monitoring LULC changes and its impact on the LST and NDVI in District 1 of Shiraz City. Arabian Journal of Geosciences, 12 (4). doi:10.1007/S12517-019-4259-6
  • Ghanbari, R., et al. 2023. Land surface temperature analysis in densely populated zones from the perspective of spectral indices and urban morphology. International Journal of Environmental Science and Technology, 20 (3), 2883–2902. doi:10.1007/S13762-022-04725-4
  • Guha, S. and Govil, H., 2023. Evaluating the stability of the relationship between land surface temperature and land use/land cover indices: a case study in Hyderabad city, India. Geology, Ecology, and Landscapes, 1–13. doi:10.1080/24749508.2023.2182083
  • Guha, S., Govil, H., and Mukherjee, S., 2023. Long- term evaluation of land surface temperature with bare surface index and surface vegetation index: a case study of a Central Indian City. Papers in Applied Geography, 9 (4), 425–441. doi:10.1080/23754931.2023.2240803
  • Hadi, S.J., Shafri, H.Z.M., and Mahir, M.D., 2014. Modelling LULC for the period 2010-2030 using GIS and remote sensing: a case study of Tikrit, Iraq. IOP Conference Series: Earth and Environmental Science, 20, 012053. doi:10.1088/1755-1315/20/1/012053
  • Haldar, S., et al. 2023. Dynamicity of land use/land cover (LULC) an analysis from peri-urban and rural neighbourhoods of Durgapur Municipal Corporation (DMC) in India. Regional Sustainability, 4 (2), 150–172. doi:10.1016/j.regsus.2023.05.001
  • Halmy, M.W.A., et al. 2015. Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA. Applied Geography, 63, 101–112. doi:10.1016/j.apgeog.2015.06.015
  • Hang, R., et al. 2020. Classification of hyperspectral and LiDAR data using coupled CNNs. IEEE Transactions on Geoscience and Remote Sensing, 58 (7), 4939–4950. doi:10.1109/TGRS.2020.2969024
  • Hashim, B.M., et al. 2022. Effect of land use land cover changes on land surface temperature during 1984–2020: a case study of Baghdad city using landsat image. Natural Hazards, 112 (2), 1223–1246. doi:10.1007/S11069-022-05224-Y
  • Hong, D., et al. 2023. Cross-city matters: a multimodal remote sensing benchmark dataset for cross-city semantic segmentation using high-resolution domain adaptation networks. Remote Sensing of Environment, 299, 113856. doi:10.1016/j.rse.2023.113856
  • Hong, D., et al. 2024a. Multimodal artificial intelligence foundation models: unleashing the power of remote sensing big data in earth observation. The Innovation Geoscience, 2, 100055. doi:10.59717/j.xinn-geo.2024.100055
  • Hong, D., et al. 2024b. SpectralGPT: spectral remote sensing foundation model. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1–18. doi:10.1109/TPAMI.2024.3362475
  • Hürlimann, M., et al. 2022. Impacts of future climate and land cover changes on landslide susceptibility: regional scale modelling in the Val d’Aran region (Pyrenees, Spain). Landslides, 19 (1), 99–118. doi:10.1007/S10346-021-01775-6
  • Hussain, S. and Karuppannan, S., 2023. Land use/land cover changes and their impact on land surface temperature using remote sensing technique in district Khanewal, Punjab Pakistan. Geology, Ecology, and Landscapes, 7 (1), 46–58. doi:10.1080/24749508.2021.1923272
  • Jin, K., et al. 2023. Urban–rural interface dominates the effects of urbanization on watershed energy and water balances in Southern China. Landscape Ecology, 38, 3869–3887. doi:10.1007/S10980-023-01648-4
  • Jung, M.C., Dyson, K., and Alberti, M., 2021. Urban landscape heterogeneity influences the relationship between tree canopy and land surface temperature. Urban Forestry and Urban Greening, 57, 126930. doi:10.1016/j.ufug.2020.126930
  • Kafy, A.A., et al. 2021a. Predicting changes in land use/land cover and seasonal land surface temperature using multi-temporal landsat images in the northwest region of Bangladesh. Heliyon, 7, e07623. doi:10.1016/j.heliyon.2021.e07623
  • Kafy, A.A., et al. 2021b. Prediction of seasonal urban thermal field variance index using machine learning algorithms in Cumilla, Bangladesh. Sustainable Cities and Society, 64, 102542. doi:10.1016/j.scs.2020.102542
  • Khan, M., et al. 2022. Trends and projections of land use land cover and land surface temperature using an integrated weighted evidence-cellular automata (WE-CA) model. Environmental Monitoring and Assessment, 194 (2). doi:10.1007/S10661-022-09785-0
  • Khan, M., et al. 2023. Machine learning-based assessment and simulation of land use modification effects on seasonal and annual land surface temperature variations. Heliyon, 9 (12), e23043. doi:10.1016/j.heliyon.2023.e23043
  • Khan, Z., et al. 2020. Land use/land cover change detection and prediction using the CA-Markov model: a case study of Quetta city, Pakistan. The Journal of geographyJournal of Geography and Social Sciences (JGSS). jgssjournal.uob.edu.pk
  • Li, C., et al. 2023. LRR-Net: an interpretable deep unfolding network for hyperspectral anomaly detection. IEEE Transactions on Geoscience and Remote Sensing, 61, 1–12. doi:10.1109/TGRS.2023.3279834
  • Liang, X., et al. 2021. Assessment of urban heat islands for land use based on urban planning: a case study in the main urban area of Xuzhou City, China. Environmental Earth Sciences, 80 (8). doi:10.1007/S12665-021-09588-5
  • Maduako, I.D., 2015. Simulation and prediction of land surface temperature (LST) dynamics within Ikom City in Nigeria using artificial neural network (ANN). Journal of Remote Sensing & GIS, 6, 96. doi:10.4172/2469-4134.1000158
  • Mahmoodi, S., et al. 2019. Understanding link between land surface temperature and landscape heterogeneity: a spatio-temporal and inter-seasonal variability study on Kabul City, Afghanistan. ISPRS Annals of the Photogrammetry, Remote Sensing & Spatial Information Sciences, IV-5/W2, 57–65. doi:10.5194/isprs-annals-IV-5-W2-57-2019. IV-5/W2
  • Mandal, J., Patel, P.P., and Samanta, S., 2022. Examining the expansion of Urban Heat Island effect iN THE Kolkata Metropolitan Area and its vicinity using multi-temporal MODIS satellite data. Advances in Space Research, 69 (5), 1960–1977. doi:10.1016/j.asr.2021.11.040
  • Mansour, S., et al. 2022. Forecasting of built-up land expansion in a desert urban environment. Remote Sensing, 14, 2037. doi:10.3390/rs14092037
  • Mathewos, M., Lencha, S.M., and Tsegaye, M., 2022. Land use and land cover change assessment and future predictions in the Matenchose Watershed, Rift Valley Basin, using CA-Markov simulation. Land (Basel), 11 (10), 1632. doi:10.3390/land11101632
  • Mehrad, A.T., 2020. Causes of air pollution in kabul and its effects on health. Indian Journal of Ecology, 7, 997–1002
  • Minta, M., et al. 2018. Land use and land cover dynamics in Dendi-Jeldu hilly-mountainous areas in the central Ethiopian highlands. Geoderma, 314, 27–36. doi:10.1016/j.geoderma.2017.10.035
  • Moazzam, M.F.U., Doh, Y.H., and Lee, B.G., 2022. Impact of urbanization on land surface temperature and surface urban heat island using optical remote sensing data: a case study of Jeju island, Republic of Korea. Building & Environment, 222, 109368. doi:10.1016/j.buildenv.2022.109368
  • Mostafa, E., Li, X., and Sadek, M., 2023. Urbanization trends analysis using hybrid modeling of fuzzy analytical hierarchical process-cellular automata-Markov chain and investigating its impact on land surface temperature over Gharbia City, Egypt. Remote Sensing, 15, 843. doi:10.3390/rs15030843
  • Najmuddin, O., Deng, X., and Bhattacharya, R., 2018. The dynamics of land use/cover and the statistical assessment of cropland change drivers in the Kabul River Basin, Afghanistan. Sustainability, 10 (2), 423. doi:10.3390/su10020423
  • Nasar-U-Minallah, M., et al. 2023. Ecological monitoring of urban thermal field variance index and determining the surface urban heat island effects in Lahore, Pakistan. Environmental Monitoring and Assessment, 195 (10). doi:10.1007/S10661-023-11799-1
  • Peng, S.S., et al. 2014. Afforestation in China cools local land surface temperature. Proceedings of the National Academy of Sciences, 111, 2915–2919. doi:10.1073/PNAS.1315126111
  • Prestele, R., et al. 2016. Hotspots of uncertainty in land-use and land-cover change projections: a global-scale model comparison. Global Change Biology, 22, 3967–3983. doi:10.1111/GCB.13337
  • Qu, S., et al. 2020. Distinguishing the impacts of climate change and anthropogenic factors on vegetation dynamics in the Yangtze River Basin, China. Ecological Indicators, 108, 105724. doi:10.1016/j.ecolind.2019.105724
  • Qutbudin, I., et al. 2019. Seasonal drought pattern changes due to climate variability: case study in Afghanistan. Water (Basel), 11 (5), 1096. doi:10.3390/w11051096
  • Rendana, M., et al. 2015. CA-Markov for predicting land use changes in tropical catchment area: a case study in Cameron Highland, Malaysia. Journal of Applied Sciences, 15 (4), 689–695. doi:10.3923/jas.2015.689.695
  • Saha, S., et al. 2021. Analyzing spatial relationship between land use/land cover (LULC) and land surface temperature (LST) of three urban agglomerations (UAs) of Eastern India. Remote Sensing Applications: Society & Environment, 22, 100507. doi:10.1016/j.rsase.2021.100507
  • Sahak, A.S., et al. 2023. Seasonal monitoring of urban heat island based on the relationship between land surface temperature and land use/cover: a case study of Kabul City, Afghanistan. Earth Science Informatics, 16, 845–861. doi:10.1007/S12145-022-00918-0
  • Santé, I., et al. 2010. Cellular automata models for the simulation of real-world urban processes: a review and analysis. Landscape and Urban Planning, 96 (2), 108–122. doi:10.1016/j.landurbplan.2010.03.001
  • Sarhan, E., et al. 2023. Climatology of cold spots and LST minimums in Iran using high-resolution satellite data. Theoretical and Applied Climatology, 155, 1395–1413. doi:10.1007/S00704-023-04699-4
  • Shahfahad, et al. 2022. Land use/land cover change and its impact on surface urban heat island and urban thermal comfort in a metropolitan city. Urban Climate, 41, 101052. doi:10.1016/j.uclim.2021.101052
  • Shen, X., et al. 2020. Marshland loss warms local land surface temperature in China. Geophysical Research Letters, 47. doi:10.1029/2020GL087648
  • Singh, S.K., et al. 2018. Modelling of land use land cover change using earth observation data-sets of Tons River Basin, Madhya Pradesh, India. Geocarto International, 33 (11), 1202–1222. doi:10.1080/10106049.2017.1343390
  • Song, Y., et al. 2021. Quantitative assessment of the habitat quality dynamics in Yellow River Basin, China. Environmental Monitoring and Assessment, 193 (9). doi:10.1007/S10661-021-09404-4
  • Srivastava, A., et al. 2023. Spatio-temporal dynamics of land use/cover and land surface temperature in Prayagraj city, India. Indoor and Built Environment, 32 (6), 1250–1268. doi:10.1177/1420326X231159633
  • Subedi, P., Subedi, K., and Thapa, B., 2013. Application of a hybrid cellular automaton – Markov (CA-Markov) model in land-use change prediction: a case study of Saddle Creek Drainage Basin, Florida. Applied Ecology and Environmental Sciences, 1 (6), 126–132. doi:10.12691/aees-1-6-5
  • Tabassum, A., et al. 2023. Exploring the relationship between land use land cover and land surface temperature: a case study in Bangladesh and the policy implications for the Global South. Journal of Geovisualization and Spatial Analysis. 7. doi:10.1007/S41651-023-00155-Z
  • Tariq, A., et al. 2023. Spatio-temporal assessment of land use land cover based on trajectories and cellular automata Markov modelling and its impact on land surface temperature of Lahore district Pakistan. Environmental Monitoring and Assessment, 195 (1). doi:10.1007/S10661-022-10738-W
  • Ullah, S., et al. 2019. Analysis and simulation of land cover changes and their impacts on land surface temperature in a lower Himalayan region. Journal of Environmental Management, 245, 348–357. doi:10.1016/J.JENVMAN.2019.05.063
  • Ullah, S., et al. 2022. Analysis of municipal solid waste management in Afghanistan, current and future prospects: a case study of Kabul city. Applied Ecology and Environmental Research, 20, 2485–2507. doi:10.15666/aeer/2003_24852507
  • Ullah, W., et al. 2023. Analysis of the relationship among land surface temperature (LST), land use land cover (LULC), and normalized difference vegetation index (NDVI) with topographic elements in the lower Himalayan region. Heliyon, 9 (2), e13322. doi:10.1016/j.heliyon.2023.e13322
  • Waseem, A. and Athar, H., 2022. LST variability and population growth in district of Rawalpindi, Pakistan during 1993–2018: a regional climate model based bias correction approach for LST. The Egyptian Journal of Remote Sensing and Space Science, 25 (4), 975–985. doi:10.1016/j.ejrs.2022.10.002
  • Weslati, O., Bouaziz, S., and Sarbeji, M.M., 2023. Modelling and assessing the spatiotemporal changes to future land use change scenarios using remote sensing and CA-Markov model in the mellegue catchment. Journal of the Indian Society of Remote Sensing, 51 (1), 9–29. doi:10.1007/s12524-022-01618-4
  • Zeren Cetin, I., et al. 2023. The effects of climate on land use/cover: a case study in Turkey by using remote sensing data. Environmental Science and Pollution Research, 30 (3), 5688–5699. doi:10.1007/S11356-022-22566-Z
  • Zhang, B., Zhang, M., and Hong, D., 2021. Land surface temperature retrieval from Landsat 8 OLI/TIRS images based on back-propagation neural network. Indoor and Built Environment, 30 (1), 22–38. doi:10.1177/1420326X19882079
  • Zhang, L., et al. 2022. Direct and indirect impacts of urbanization on vegetation growth across the world’s cities. Science Advances, 8 (27). doi:10.1126/SCIADV.ABO0095
  • Zhou, X., et al. 2016. Impacts of inland water area changes on the local climate of Wuhan, China. Indoor and Built Environment, 25 (2), 296–313. doi:10.1177/1420326X14546774

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.