41
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Exploring different approaches for landslide susceptibility zonation mapping in Manipur: a comparative study of AHP, FR, machine learning, and deep learning models

ORCID Icon, &
Received 06 Mar 2024, Accepted 11 Jun 2024, Published online: 22 Jun 2024

References

  • Achour, Y. and Pourghasemi, H.R., 2020. How do machine learning techniques help in increasing accuracy of landslide susceptibility maps? Geoscience Frontiers, 11 (3), 871–883. doi:10.1016/j.gsf.2019.10.001.
  • Arabameri, A., et al. 2020. Landslide susceptibility evaluation and management using different machine learning methods in the Gallicash River Watershed, Iran. Remote Sensing, 12 (3), 475. doi:10.3390/rs12030475.
  • Balamurugan, G., Ramesh, V., and Touthang, M., 2016. Landslide susceptibility zonation mapping using frequency ratio and fuzzy gamma operator models in part of NH-39, Manipur, India. National Hazards, 84 (1), 465–488. doi:10.1007/s11069-016-2434-6.
  • Brabb, E.E., 1995. The san mateo county California gis project for predicting the consequences of hazardous geologic processes. doi:10.1007/978-94-015-8404-3_15.
  • Breiman, L., 2001. Random forests. Machine Learning, 45 (1), 5–32. doi:10.1023/A:1010933404324.
  • Bröcker, J. and Smith, L.A., 2007. Scoring probabilistic forecasts: the importance of being proper. Weather Forecast, 22 (2), 382–388. doi:10.1175/WAF966.1.
  • Bui, D.T., et al. 2020. Comparing the prediction performance of a deep learning neural network model with conventional machine learning models in landslide susceptibility assessment. Catena, 188, 104426. doi:10.1016/j.catena.2019.104426.
  • Carrara, A., 1983. Multivariate models for landslide hazard evaluation. Journal of the International Association for Mathematical Geology, 15 (3), 403–426. doi:10.1007/BF01031290.
  • Catani, F., et al. 2013. Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues. Natural Hazards and Earth System Sciences, 13 (11), 2815–2831. doi:10.5194/nhess-13-2815-2013.
  • Chacón, J., et al. 2006. Engineering geology maps: landslides and geographical information systems. Bulletin of Engineering Geology and the Environment, 65 (4), 341–411. doi:10.1007/s10064-006-0064-z.
  • Chen, W., et al. 2018a. Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China. Science of the Total Environment, 626, 1121–1135. doi:10.1016/j.scitotenv.2018.01.124.
  • Chen, W., et al. 2018b. Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naïve Bayes tree for landslide susceptibility modeling. Science of the Total Environment, 644, 1006–1018. doi:10.1016/j.scitotenv.2018.06.389.
  • Chen, J.S., Huang, H.Y., and Hsu, C.Y., 2020. A kNN based position prediction method for SNS places. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics). doi:10.1007/978-3-030-42058-1_22.
  • Chung, C.J.F. and Fabbri, A.G., 2003. Validation of spatial prediction models for landslide hazard mapping. National Hazards, 30 (3), 451–472. doi:10.1023/B:NHAZ.0000007172.62651.2b.
  • Cortes, C., Vapnik, V., and Saitta, L., 1995. Support-vector networks. Machine Learning, 20 (3), 273–297. doi:10.1007/BF00994018.
  • Cristianini, N. and Shawe-Taylor, J., 2000. An introduction to support vector machines and other kernel-based learning methods. An Introduction to Support Vector Machine Other Kernel-Based Learning Methods, Mar. doi:10.1017/CBO9780511801389.
  • Cruden, D.M., 1996. Cruden, dm, varnes, dj, 1996, landslide types and processes, transportation research board, us national academy of sciences, special report, 247: 36–75.Transp Res Board, 247, 36–57.
  • Damaševičius, R., 2010. Optimization of SVM parameters for recognition of regulatory DNA sequences. TOP, 18 (2), 339–353. doi:10.1007/s11750-010-0152-x.
  • Dietrich, W.E., et al. 1995. A process-based model for colluvial soil depth and shallow landsliding using digital elevation data. Hydrological Process, 9 (3–4), 383–400. doi:10.1002/HYP.3360090311.
  • Ding, A., Zhang, Q., Zhou, X., and Dai, B., 2017. Automatic recognition of landslide based on CNN and texture change detection. In: Proceedings - 2016 31st Youth Academic Annual Conference of Chinese Association of Automation, YAC 2016. doi: 10.1109/YAC.2016.7804935.
  • Felicísimo, Á.M., et al. 2013. Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study. Landslides, 10 (2), 175–189. doi:10.1007/s10346-012-0320-1.
  • Furlani, S. and Ninfo, A., 2015. Is the present the key to the future? Earth-Science Review, 142, 38–46. doi:10.1016/J.EARSCIREV.2014.12.005.
  • Ghorbanzadeh, O., et al. 2019. Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection. Remote Sensing, 11 (2), 196. doi:10.3390/rs11020196.
  • Goetz, J.N., et al. 2015. Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling. Computers & Geosciences, 81, 1–11. doi:10.1016/j.cageo.2015.04.007.
  • Grizonnet, M., et al. 2017. Orfeo ToolBox: open source processing of remote sensing images. Open Geospatial Data, Software Stand, 2 (1). doi:10.1186/s40965-017-0031-6.
  • Guzzetti, F., et al. 1999. Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31 (1–4), 181–216. doi:10.1016/S0169-555X(99)00078-1.
  • Guzzetti, F., et al. 2005. Probabilistic landslide hazard assessment at the basin scale. Geomorphology, 72 (1–4), 272–299. doi:10.1016/j.geomorph.2005.06.002.
  • Guzzetti, F., et al. 2012. Landslide inventory maps: new tools for an old problem. Earth-Science Reviews, 112 (1–2), 42–66. doi:10.1016/j.earscirev.2012.02.001.
  • Hong, D., et al. 2023a. Cross-city matters: a multimodal remote sensing benchmark dataset for cross-city semantic segmentation using high-resolution domain adaptation networks. Remote Sensing of Environment, 299, 113856. doi:10.1016/J.RSE.2023.113856.
  • Hong, D., et al. 2023b. SpectralGPT: spectral remote sensing foundation model. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1–18. doi:10.1109/TPAMI.2024.3362475.
  • Hong, H., Pourghasemi, H.R., and Pourtaghi, Z.S., 2016. Landslide susceptibility assessment in Lianhua County (China): a comparison between a random forest data mining technique and bivariate and multivariate statistical models. Geomorphology, 259, 105–118. doi:10.1016/j.geomorph.2016.02.012.
  • Kanevski, M., Pozdnoukhov, A., and Timonin, V., 2009. Machine learning for spatial environmental data: theory, applications and software. Machine Learning for Spatial Environmental Data: Theory, Applications, and Software, 1–371. doi:10.1201/9781439808085/MACHINE-LEARNING-SPATIAL-ENVIRONMENTAL-DATA-MIKHAIL-KANEVSKI-VADIM-TIMONIN-ALEXI-POZDNUKHOV.
  • Lee, S., Hong, S.M., and Jung, H.S., 2017. A support vector machine for landslide susceptibility mapping in Gangwon Province, Korea. Sustainability (Switzerland), 9 (1), 48. doi:10.3390/su9010048.
  • Lin, Y.-P., Chu, H.J., and Wu, C.F., 2010. Spatial pattern analysis of landslide using landscape metrics and logistic regression: a case study in Central Taiwan. Hydrology Earth System Science Discuss, 7 (3), 3423–3451.
  • Marjanović, M., Bajat, B., and Kovačević, M., 2009. Landslide susceptibility assessment with machine learning algorithms. In: International Conference on Intelligent Networking and Collaborative Systems IncoS 2009, 273–278. doi:10.1109/INCOS.2009.25.
  • Muraina, I.O., 2022. Ideal dataset splitting ratios in machine learning algorithms: general concerns for data scientists and data analysts. In: 7th International Mardin Artuklu Science Research Conference (February), 496–504. Available. https://www.researchgate.net/publication/358284895_IDEAL_DATASET_SPLITTING_RATIOS_IN_MACHINE_LEARNING_ALGORITHMS_GENERAL_CONCERNS_FOR_DATA_SCIENTISTS_AND_DATA_ANALYSTS Accessed: May 1, 2024. [Online].
  • Okendro, M., Kushwaha, R.A.S., and Goel, O.P., 2023. A study of landslides along part of a national highway in Manipur, India short communication, 2021. [Online]. Available from: https://www.researchgate.net/publication/349126046_A_Study_of_Landslides_along_part_of_a_National_Highway_in_Manipur_India_Short_Communication [Accessed 21 September, 2023].
  • Park, N.W., 2015. Using maximum entropy modeling for landslide susceptibility mapping with multiple geoenvironmental data sets. Environmental Earth Sciences, 73 (3), 937–949. doi:10.1007/s12665-014-3442-z.
  • Pedregosa, F., et al., 2011. Scikit-learn: machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
  • Pourghasemi, H.R. and Rahmati, O., 2018. Prediction of the landslide susceptibility: which algorithm, which precision? Catena, 162, 177–192. doi:10.1016/j.catena.2017.11.022.
  • Saaty, T.L., 2008. Decision making with the analytic hierarchy process decision making with the analytic hierarchy process. International Journal of Services Sciences, 1 (1), 83. doi:10.1504/IJSSCI.2008.017590
  • Shirzadi, A., et al. 2018. Novel GIS based machine learning algorithms for shallow landslide susceptibility mapping. Sensors (Switzerland), 18 (11), 3777. doi:10.3390/s18113777.
  • Singh, C.D., Behera, K.K., and Rocky, W.S., 2011. Landslide susceptibility along NH-39 between Karong and Mao, Senapati district, Manipur. Journal of the Geological Society of India, 78 (6), 559–570. doi:10.1007/s12594-011-0120-6.
  • Tien Bui, D., et al. 2016. Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides, 13 (2), 361–378. doi:10.1007/s10346-015-0557-6.
  • Vakhshoori, V., et al. 2019. Landslide susceptibility mapping using GIS-based data mining algorithms. Water (Switzerland), 11 (11), 2292. doi:10.3390/w11112292.
  • Vojteková, J. and Vojtek, M., 2020. Assessment of landslide susceptibility at a local spatial scale applying the multi-criteria analysis and GIS: a case study from Slovakia. Geomatics, Natural Hazards Risk, 11 (1), 131–148. doi:10.1080/19475705.2020.1713233.
  • Wang, Y., Fang, Z., and Hong, H., 2019. Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China. Science of the Total Environment, 666, 975–993. doi:10.1016/j.scitotenv.2019.02.263.
  • Xu, C., et al. 2012. GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China. Geomorphology, 145–146, 70–80. doi:10.1016/J.GEOMORPH.2011.12.040.
  • Yalcin, A., 2008. GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. CATENA, 72 (1), 1–12. doi:10.1016/J.CATENA.2007.01.003.
  • Yao, X., Tham, L.G., and Dai, F.C., 2008. Landslide susceptibility mapping based on support vector machine: a case study on natural slopes of Hong Kong, China. Geomorphology, 101 (4), 572–582. doi:10.1016/J.GEOMORPH.2008.02.011.
  • Yilmaz, I., 2010. The effect of the sampling strategies on the landslide susceptibility mapping by conditional probability and artificial neural networks. Environmental Earth Sciences, 60 (3), 505–519. doi:10.1007/s12665-009-0191-5.
  • Youssef, A.M., et al. 2016. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides, 13 (5), 839–856. doi:10.1007/s10346-015-0614-1.
  • Zhao, W. and Du, S., 2016. Spectral–spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach. IEEE Transactions on Geoscience and Remote Sensing: A Publication of the IEEE Geoscience and Remote Sensing Society, 54 (8), 4544–4554. doi:10.1109/TGRS.2016.2543748.
  • Zhou, C., et al. 2018. Landslide susceptibility modeling applying machine learning methods: a case study from longju in the Three Gorges reservoir area, China. Computers & Geosciences, 112, 23–37. doi:10.1016/j.cageo.2017.11.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.