65
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Under What Conditions do the Inflorescence Bract Phytoliths of Oat [Avena sativa (L.)] Become Autofluorescent?

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 15 Jan 2024, Accepted 08 Jun 2024, Published online: 03 Jul 2024

References

  • Albert, R. M., M. K. Bamford, I. G. Stanistreet, H. Stollhofen, C. A. Rivera-Rondón, J. K. Njau, and R. J. Blumenschine. 2018. “River-fed Wetland Palaeovegetation and Palaeoecology at the HWK W Site, Bed I, Olduvai Gorge.” Review of Palaeobotany and Palynology 259: 223–241. https://doi.org/10.1016/j.revpalbo.2018.09.010.
  • Alonso-Eguiluz, M. 2021. Gestión del medio vegetal y dieta animal en depósitos neolíticos de fumier en la sierra de Cantabria (San Cristóbal y Los Husos II) y la sierra de Atapuerca (El Mirador). Análisis microarqueológico de fitolitos, pseudomorfos de calcita, esferolitos y FTIR. Thesis dissertation. Universidad del País Vasco (UPV/EHU).
  • Alonso-Eguiluz, M., R. M. Albert, J. M. Vergès, and J. Fernández-Eraso. 2024. “New Insights Into Shepherds’ Activities: Multi-Proxy Approach Applied to Fumier Deposits from the North of Iberian Peninsula.” Quaternary International 683–684: 145–161. https://doi.org/10.1016/j.quaint.2023.06.012.
  • Baker, G. 1960. “Hook-shaped Opal Phytoliths in the Epidermal Cells of Oats.” Australian Journal of Botany 8: 69–74. https://doi.org/10.1071/BT9600069.
  • Ball, T., K. Chandler-Ezell, R. Dickau, N. Duncan, T. C. Hart, J. Iriarte, C. Lentfer, et al. 2016. “Phytoliths as a Tool for Investigations of Agricultural Origins and Dispersals Around the World.” Journal of Archaeological Science 68: 32–45. https://doi.org/10.1016/j.jas.2015.08.010.
  • Bennett, D. M., and D. W. Parry. 1981. “Electron-probe Microanalysis Studies of Silicon in the Epicarp Hairs of the Caryopses of Hordeum sativum Jess., Avena sativa L., Secale cereale L. and Triticum aestivum L.” Annals of Botany 48: 645–654. https://doi.org/10.1093/oxfordjournals.aob.a086173.
  • Boardman, S., and G. Jones. 1990. “Experiments on the Effects of Charring on Cereal Plant Components.” Journal of Archaeological Science 17: 1–11. https://doi.org/10.1016/0305-4403(90)90012-T.
  • Braadbaart, F., T. van Brussel, B. van Os, and Y. Eijskoot. 2017. “Fuel Remains in Archaeological Contexts: Experimental and Archaeological Evidence for Recognizing Remains in Hearths Used by Iron Age Farmers who Lived in Peatlands.” The Holocene 27 (11): 1682–1693. https://doi.org/10.1177/0959683617702231.
  • Brochier, JÉ. 2002. “Les Sédiments Anthropiques. Méthodes D’étude et Perspectives.” In Géologie de la Préhistoire: Méthodes, Techniques, Applications, edited by J.-C. Miskovsky, 453–477. Paris: Géopré. éditions.
  • Cabanes, D., S. Weiner, and R. Shahack-Gross. 2011. “Stability of phytoliths in the archaeological record: A dissolution study of modern and fossil phytoliths.” Journal of Archaeological Science 38: 2480–2490. https://doi.org/10.1016/j.jas.2011.05.020.
  • Canti, M. G. 2003. “Aspects of the Chemical and Microscopic Characteristics of Plant Ashes Found in Archaeological Soils.” Catena 54: 339–361. https://doi.org/10.1016/S0341-8162(03)00127-9.
  • Dabney III, C., J. Ostergaard, E. Watkins, and C. Chen. 2016. “A Novel Method to Characterize Silica Bodies in Grasses.” Plant Methods 12: 3. https://doi.org/10.1186/s13007-016-0108-8.
  • Dal Corso, M., W. A. Out, R. Ohlrau, R. Hofmann, S. Dreibrodt, M. Videiko, J. Müller, and W. Kirleis. 2018. “Where are the Cereals? Contribution of Phytolith Analysis to the Study of Subsistence Economy at the Trypillia Site Maidanetske (ca. 3900-3650 BCE), Central Ukraine.” Journal of Arid Environments 157: 137–148. https://doi.org/10.1016/j.jaridenv.2018.06.009.
  • Delhon, C., A. Alexandre, J.-F. Berger, S. Thiébault, J.-L. Brochier, and J. D. Meunier. 2003. “Phytolith Assemblages as a Promising Tool for Reconstructing Mediterranean Holocene Vegetation.” Quaternary Research 59: 48–60. https://doi.org/10.1016/S0033-5894(02)00013-3.
  • Devos, Y., K. Groote, J. de Moens, and L. Vrydaghs. 2019. “Facing Complexity: An Interdisciplinary Study of an Early Medieval Dark Earth Witnessing Pasture an Crop Cultivation from the Center of Aalst (Belgium).” In Soils as Records of Past and Present. from Soil Surveys to Archaeological Sites: Research Strategies for Interpreting Soil Characteristics, edited by J. Deak, C. Ampe, and J. H. Mikkelsen, 159–171. Bruges: Raakvlak.
  • Devos, Y., M. J. Hodson, and L. Vrydaghs. 2021. “Auto-fluorescent Phytoliths: A new Method for Detecting Heating and Fire.” Environmental Archaeology 26: 388–405. https://doi.org/10.1080/14614103.2020.1777056.
  • Donaldson, L. 2020. “Autofluorescence in Plants.” Molecules 25 (10): 2393. https://doi.org/10.3390/molecules25102393.
  • Dong, H., X. Wei, R. Li, R. S. Vachula, S. Tan, L. Zhou, and T. Gan. 2022. “Burned Phytoliths Absorbing Black Carbon as a Potential Proxy for Paleofire.” The Holocene 32: 442–450. https://doi.org/10.1177/09596836221074033.
  • Elbaum, R., S. Weiner, R. M. Albert, and M. Elbaum. 2003. “Detection of Burning of Plant Materials in the Archaeological Record by Changes in the Refractive Indices of Siliceous Phytoliths.” Journal of Archaeological Science 30: 217–226. https://doi.org/10.1006/jasc.2002.0828.
  • Esteban, I., M. K. Bamford, A. House, C. S. Miller, F. H. Neumann, E. Schefuß, J. Pargeter, H. C. Cawthra, and E. C. Fisher. 2020. “Coastal Palaeoenvironments and Hunter-Gatherer Plant-use at Waterfall Bluff Rock Shelter in Mpondoland (South Africa) from MIS 3 to the Early Holocene.” Quaternary Science Reviews 250: 106664. https://doi.org/10.1016/j.quascirev.2020.106664.
  • Evett, R. R., and R. Q. Cuthrell. 2017. “Testing Phytolith Analysis Approaches to Estimate the Prehistoric Anthropogenic Burning Regime on the Central California Coast.” Quaternary International 434: 78–90. https://doi.org/10.1016/j.quaint.2015.10.070.
  • Fritzsch, D., C. Langan, and A. Röpke. 2019. “Geschmolzenes Stroh – Brennexperimente an Getreide und Seine Bedeutung für die Interpretation von Erhitzten Archäologischen Sedimenten.” Archäologische Berichte 30: 165–175.
  • Gebhardt, A., and R. Langohr. 1999. “Micromorphological Study of Construction Materials and Living Floors in the Medieval Motte of Werken (West Flanders, Belgium).” Geoarchaeology 14: 595–620. https://doi.org/10.1002/(SICI)1520-6548(199910)14:7<595::AID-GEA1>3.0.CO;2-Q.
  • Ghavi, Andam S., E. Marinova, L. Wick, K. Haas, C. Lemmes, M. Rösch, T. Schiedek, et al. 2024. “The Role of Fire in the Medieval and Early Modern Landscape of Bad Waldsee Within the Broader Context of the pre-Alpine Forelands of South-Western Germany.” Vegetation History and Archaeobotany 33: 159–167. https://doi.org/10.1007/s00334-023-00973-7.
  • Handreck, K. A., and L. H. P. Jones. 1968. “Studies of silica in the oat plant. IV. Silica content of plant parts in relation to stage of growth, supply of silica and transpiration.” Plant and Soil 29: 449–459. https://doi.org/10.1007/BF01348976.
  • Hodson, M. J. 2018. “Phytoliths in Archaeology: Chemical Aspects.” In Encyclopedia of Global Archaeology, edited by C. Smith, 1–8. Cham: Springer International Publishing AG. https://doi.org/10.1007/978-3-319-51726-1_3250-1.
  • Hodson, M. J. 2019. “The Relative Importance of Cell Wall and Lumen Phytoliths in Carbon Sequestration in Soil: A Hypothesis.” Frontiers in Earth Science 7: 167. https://doi.org/10.3389/feart.2019.00167.
  • Hodson, M. J., and A. G. Sangster. 1989. “Silica deposition in the inflorescence bracts of wheat (Triticum aestivum L.) II. X-ray microanalysis and backscattered electron imaging.” Canadian Journal of Botany 67: 281–287. https://doi.org/10.1139/b89-041.
  • Hodson, M. J., A. G. Sangster, and D. W. Parry. 1985. “An ultrastructural study on the developmental phases and silicification of the glume of Phalaris canariensis L.” Annals of Botany 55: 649–655. https://doi.org/10.1093/oxfordjournals.aob.a086944.
  • International Committee for Phytolith Taxonomy (ICPT) (Katharina Neumann, Caroline A. E. Strömberg, Terry Ball, Rosa Maria Albert, Luc Vrydaghs and Linda Scott Cummings. 2019. “International Code for Phytolith Nomenclature (ICPN) 2.0.” Annals of Botany 124: 189–199. https://doi.org/10.1093/aob/mcz064.
  • Jones, L. H. P., and A. A. Milne. 1963. “Studies of silica in the oat plant I. Chemical and physical properties of the silica.” Plant and Soil 18: 207–220. https://doi.org/10.1007/BF01347875.
  • Jones, L. H. P., A. A. Milne, and S. M. Wadham. 1963. “Studies of silica in the oat plant II. Distribution of the silica in the plant.” Plant and Soil 18: 358–371. https://doi.org/10.1007/BF01347235.
  • Kaufman, P. B., J. D. LaCroix, J. J. Rosen, L. F. Allard, and W. C. Bigelow. 1972. “Scanning Electron Microscopy and Electron Microprobe Analysis of Silicification Patterns in Inflorescence Bracts of Avena sativa.” American Journal of Botany 59: 1018–1025. https://doi.org/10.1002/j.1537-2197.1972.tb10180.x.
  • Kaufman, P. B., L. B. Petering, and J. G. Smith. 1970. “Ultrastructural Development of Cork-Silica Cell Pairs in Avena Internodal Epidermis.” Botanical Gazette 131: 173–185. https://doi.org/10.1086/336529.
  • Kitin, P., S. Nakaba, C. G. Hunt, S. Lim, and R. Funada. 2020. “Direct Fluorescence Imaging of Lignocellulosic and Suberized Cell Walls in Roots and Stems.” AoB PLANTS 12: plaa032. https://doi.org/10.1093/aobpla/plaa032.
  • Kovács, G., Á. Pető, and M. Vicze. 2020. “Development of a Middle Bronze Age (1900–1500 cal BC) house at the site of Százhalombatta-Földvár, Hungary: detecting choice of materials by the means of archaeological thin section soil micromorphology and phytolith analysis.” Archaeological and Anthropological Sciences 12: 258. https://doi.org/10.1007/s12520-020-01205-z.
  • Kumar, S., N. Adiram-Filiba, S. Blum, J. A. Sanchez-Lopez, O. Tzfadia, A. Omid, H. Volpin, Y. Heifetz, G. Goobes, and R. Elbaum. 2020. “Siliplant1 Protein Precipitates Silica in Sorghum Silica Cells.” Journal of Experimental Botany 71: 6830–6843. https://doi.org/10.1093/jxb/eraa258.
  • Kumar, S., Y. Milstein, Y. Brami, M. Elbaum, and R. Elbaum. 2017. “Mechanism of Silica Deposition in Sorghum Silica Cells.” New Phytologist 213: 791–798. https://doi.org/10.1111/nph.14173.
  • Lawton, J. R. 1980. “Observations on the structure of epidermal cells, particularly the cork and silica cells, from the flowering stem internode of Lolium temulentum L.” Botanical Journal of the Linnean Society 80: 161–177. https://doi.org/10.1111/j.1095-8339.1980.tb01663.x.
  • Matthews, W. 1995. “Micromorphological Characterisation and Interpretation of Occupation Deposits and Microstratigraphic Sequences at Abu Salabikh, Iraq.” In Archaeological Sediments and Soils: Analysis, Interpretation and Management, edited by A. J. Barham, and R. I. Macphail, 41–76. London: Routledge.
  • Meng, M., D. Jie, G. Gao, T. Gao, S. Xu, Y. Lian, H. Xu, et al. 2022. “Characteristics of Burned Phytolith from Representative Plants in Northeast China and Implications for Paleo-Fire Reconstruction.” Review of Palaeobotany and Palynology 300: 104628. https://doi.org/10.1016/j.revpalbo.2022.104628.
  • Monetti, L., K. B. Gafner, and T. J. U. Thompson. 2021. “Burning Issues with the Archaeology of Fire.” Journal of Archaeological Science: Reports 39: 103156. https://doi.org/10.1016/j.jasrep.2021.103156.
  • Motomura, H., T. Fujii, and M. A. Suzuki. 2006. “Silica Deposition in Abaxial Epidermis Before the Opening of Leaf Blades of Pleioblastus chino (Poaceae, Bambusoideae).” Annals of Botany 97: 513–519. https://doi.org/10.1093/aob/mcl014.
  • Neumann, K., A. Fahmy, L. Lespez, A. Ballouche, and E. Huysecom. 2009. “The Early Holocene Palaeoenvironment of Ounjougou (Mali): Phytoliths in a Multiproxy Context.” Palaeogeography, Palaeoclimatology, Palaeoecology 276: 87–106. https://doi.org/10.1016/j.palaeo.2009.03.001.
  • Nicosia, C., and M. Canti. 2017. “Chaff.” In Archaeological Soil and Sediments Micromorphology, edited by C. Nicosia, and G. Stoops, 137–140. Oxford: Wiley Blackwell. https://doi.org/10.1002/9781118941065.ch14.
  • Parr, J. F. 2006. “Effect of Fire on Phytolith Coloration.” Geoarchaeology 21: 171–185. https://doi.org/10.1002/gea.20102.
  • Parry, D. W., and F. Smithson. 1966. “Opaline Silica in the Inflorescences of Some British Grasses and Cereals.” Annals of Botany 30: 524–538. https://doi.org/10.1093/oxfordjournals.aob.a084094.
  • Piperno, D. R. 1988. Phytolith Analysis: An Archaeological and Geological Perspective. London: Academic Press.
  • Piperno, D. R. 2006. Phytoliths: A Comprehensive Guide for Archaeologists and Paleoecologists. New York: Altamira Press.
  • Piperno, D. R., C. N. H. McMichael, N. C. A. Pitman, M. Ríos Paredes, L. A. Torres-Montenegro, and M. B. Bush. 2024. “Pre-Columbian Vegetational and Fire History in Western Amazonia: Terrestrial Soil Phytolith and Charcoal Evidence from Three Regions.” Quaternary International 691: 40–56. https://doi.org/10.1016/j.quaint.2024.01.011.
  • Pironon, J., J. D. Meunier, A. Alexandre, R. Mathieu, L. Mansuy, A. Grosjean, and E. Jarde. 2001. “Individual Characterization of Phytoliths: Experimental Approach and Consequences on Paleoenvironmental Understanding.” In Phytoliths: Applications in Earth Sciences and Human History, edited by J. D. Meunier, and F. Colin, 329–341. Lisse: A.A. Balkema Publishers.
  • Portillo, M., K. Dudgeon, G. Allistone, K. Raeuf Aziz, and W. Matthews. 2020. “The Taphonomy of Plant and Livestock Dung Microfossils: An Ethnoarchaeological and Experimental Approach.” Environmental Archaeology 26: 439–454. https://doi.org/10.1080/14614103.2020.1800344.
  • Puppe, D., M. Leue, M. Sommer, J. Schaller, and D. Kaczorek. 2022. “Auto-fluorescence in Phytoliths—A Mechanistic Understanding Derived from Microscopic and Spectroscopic Analyses.” Frontiers in Environmental Science 10: 915947. https://doi.org/10.3389/fenvs.2022.915947.
  • Runge, F. 1998. “The Effect of dry Oxidation Temperatures (500°C – 800°C) and of Natural Corrosion on Opal Phytoliths.” Deuxième Congrès International de Recherches sur les Phytolithes.” Aix-en-Provence Résumés: 73.
  • Strömberg, C. A. E., R. E. Dunn, C. Crifò, E. B. Harris, et al. 2018. “Phytoliths in Paleoecology: Analytical Considerations, Current use, and Future Directions.” In Methods in Paleoecology: Reconstructing Cenozoic Terrestrial Environments and Ecological Communities, Vertebrate Paleobiology and Paleoanthropology, edited by D. Croft, D. Su, and S. Simpson, 235–287. Cham: Springer.
  • Wang, X., and X. Shang. 2023. “The Influence of Heat on Phytolith Morphology and Implications for Quantifying Archaeological Foxtail and Common Millets.” Heritage Science 11: 143. https://doi.org/10.1186/s40494-023-00991-8.
  • Weiner, S., A. Nagorsky, I. Taxel, Y. Asscher, R. M. Albert, L. Regev, X. Yan, F. Natalio, and E. Boaretto. 2020. “High Temperature Pyrotechnology: A Macro- and Microarchaeology Study of a Late Byzantine-Beginning of Early Islamic Period (7th Century CE) Pottery Kiln from Tel Qatra/Gedera, Israel.” Journal of Archaeological Science: Reports 31: 102263. https://doi.org/10.1016/j.jasrep.2020.102263.
  • Whitlock, C., P. E. Higuera, D. B. McWethy, and C. E. Briles. 2010. “Paleoecological Perspectives on Fire Ecology: Revisiting the Fire-Regime Concept.” The Open Ecology Journal 3 (1): 6–23. https://doi.org/10.2174/1874213001003020006.
  • Wu, Y., W. Changsui, and D. Hill. 2012. “The Transformation of Phytolith Morphology as the Result of Their Exposure to High Temperatures.” Microscopic Research and Technique 75: 852–855. https://doi.org/10.1002/jemt.22004.
  • Wyche, G. 2012. High Resolution Paleothermometry Using Biogenic Silica: A Feasibility Study (unpublished MS Thesis). University of South Carolina.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.