392
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Gene expression changes in leaves of Citrus sinensis (L.) Osbeck infected by Citrus tristeza virus

, , , &
Pages 466-475 | Accepted 29 Mar 2016, Published online: 05 May 2016

References

  • Adie, B. A., Pérez-Pérez, J., Pérez-Pérez, M. M., Godoy, M., Sánchez-Serrano, J. J., Schmelz, E. A., & Solano, R. (2007). ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell, 19, 1665–1681.
  • Albrecht, U., & Bowman, K. D. (2012). Transcriptional response of susceptible and tolerant citrus to infection with Candidatus Liberibacter asiaticus. Plant Science, 185-186, 118–130.
  • Alonso-Ramírez, A., Rodríguez, D., Reyes, D. Jimenez, J. A., Nicolas, G., Lopez-Climent, M., … Nicolas, C. (2009a). Cross-talk between gibberellins and salicylic acid in early stress responses in Arabidopsis thaliana seeds. Plant Signaling & Behavior, 4, 750–751.
  • Alonso-Ramirez, A., Rodriguez, D., Reyes, D., Jimenez, J. A., Nicolas, G., Lopez-Climent, M., … Nicolas, C. (2009b). Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiology, 150, 1335–1344.
  • Ballester, A.-R., Lafuente, M. T., Forment, J., Gadea, J., De Vos, R. I. C. C. H., Bovy, A. G., & González-Candelas, L. (2011). Transcriptomic profiling of citrus fruit peel tissues reveals fundamental effects of phenylpropanoids and ethylene on induced resistance. Molecular Plant Pathology, 12, 879–897.
  • Bari, R., & Jones, J. D. G. (2009). Role of plant hormones in plant defence responses. Plant Molecular Biology, 69, 473–488.
  • Bischoff, V., Nita, S., Neumetzler, L., Schindelasch, D., Urbain, A., Eshed, R., … Scheible, W.-R. (2010). TRICHOME BIREFRINGENCE and its homolog AT5G01360 encode plant-specific DUF231 proteins required for cellulose biosynthesis in Arabidopsis. Plant Physiology, 153, 590–602.
  • Blume, B., Nürnberger, T., Nass, N., & Scheel, D. (2000). Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. Plant Cell, 12, 1425–1440.
  • Cheng, A.-X., Lou, Y.-G., Mao, Y.-B., Lu, S., Wang, L.-J., & Chen, X.-Y. (2007). Plant terpenoids: Biosynthesis and ecological functions. Journal of Integrative Plant Biology, 49, 179–186.
  • Cristofani-yaly, M., Berger, I. J., Targon, M. L. P. N., Takita, M. A., Dorta, S. D. O., Freitas-Astúa, J., … Machado, M. A. (2007). Differential expression of genes identified from Poncirus trifoliata tissue inoculated with CTV through EST analysis and in silico hybridization. Genetics and Molecular Biology, 30, 972–979.
  • Dawson, W. O., Garnsey, S. M., Tatineni, S., Folimonova, S.Y., Harper, S. J., & Gowda, S. (2013). Citrus tristeza virus-host interactions. Frontiers in Microbiology, 4, 88.
  • De Jong, A., Yakimova, E., Kapchina, V., & Woltering, E. (2002). A critical role for ethylene in hydrogen peroxide release during programmed cell death in tomato suspension cells. Planta, 214, 537–545.
  • Ferrer, J.-L., Austin, M. B., Stewart, C., & Noel, J. P. (2008). Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiology and Biochemistry, 46, 356–370.
  • Gandía, M., Conesa, A., Ancillo, G., Gadea, J., Forment, J., Pallás, V., … Guerri, J. (2007). Transcriptional response of Citrus aurantifolia to infection by Citrus tristeza virus. Virology, 367, 298–306.
  • Gechev, T. S., Minkov, I. N., & Hille, J. (2005). Hydrogen peroxide-induced cell death in Arabidopsis: Transcriptional and mutant analysis reveals a role of an oxoglutarate-dependent dioxygenase gene in the cell death process. IUBMB Life (International Union of Biochemistry and Molecular Biology: Life), 57, 181–188.
  • Goffard, N., & Weiller, G. (2007). PathExpress: A web-based tool to identify relevant pathways in gene expression data. Nucleic Acids Research, 35, W176–81.
  • Gowda, S., Satyanarayana, T., Robertson, C. J., Garnsey, S. M., & Dawson, W. O. (2005) Infection of citrus plants with virions generated in Nicotiana benthamiana plants agroinfiltrated with a binary vector based Citrus tristeza virus. Proceedings of the 16th Conference of the International Organization of Citrus Virologists. Riverside, CA: IOCV, 23–33.
  • Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444, 323–329.
  • Kachroo, A., & Kachroo, P. (2009). Fatty Acid-derived signals in plant defense. Annu Rev Phytopathol, 47, 153–176.
  • Ko, C.-B., Woo, Y.-M., Lee, D. J., Lee, M.-C., & Kim, C. S. (2007). Enhanced tolerance to heat stress in transgenic plants expressing the GASA4 gene. Plant Physiology and Biochemistry, 45, 722–728.
  • Lee, D., Polisensky, D. H., & Braam, J. (2005). Genome-wide identification of touch- and darkness- regulated Arabidopsis genes: A focus on calmodulin-like and XTH genes. New Phytologist, 165, 429–444.
  • Lee, D. S., Kim, B. K., Kwon, S. J., Jin, H. C., & Park, O. K. (2009). Arabidopsis GDSL lipase 2 plays a role in pathogen defense via negative regulation of auxin signaling. Biochemical and Biophysical Research Communications, 379, 1038–1042.
  • Li, C., Deng, G., Yang, J., Viljoen, A., Jin, Y., Kuang, R.-B., … Yi, G.-J. (2012). Transcriptome profiling of resistant and susceptible Cavendish banana roots following inoculation with Fusarium oxysporum f. sp. cubense tropical race 4. BMC Genomics, 13, 1.
  • Liu, Y., Wang, G., Wang, Z., Yang, F., Wu, G., & Hong, N. (2012). Identification of differentially expressed genes in response to infection of a mild Citrus tristeza virus isolate in Citrus aurantifolia by suppression subtractive hybridization. Scientia Horticulturae, 134, 144–149.
  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25, 402–408.
  • Martinelli, F., Uratsu, S. L., Albrecht, U., Reagan, R. L., Phu, M. L., Britton, M., … Lin, B. (2012). Transcriptome profiling of citrus fruit response to huanglongbing disease. PLoS One, 7, e38039.
  • Maule, A., Leh, V., & Lederer, C. (2002). The dialogue between viruses and hosts in compatible interactions. Current Opinion in Plant Biology Curr Opin Plant Biol, 5, 279–284.
  • Moreno, P., Ambrós, S., Albiach-Martí, M. R., Guerri, J., & Peña, L. (2008). Citrus tristeza virus: A pathogen that changed the course of the citrus industry. Molecular Plant Pathology, 9, 251–268.
  • Naranjo, M. A., Forment, J., Roldan, M., Serrano, R., & Vicente, O. (2006). Overexpression of Arabidopsis thaliana LTL1, a salt-induced gene encoding a GDSL-motif lipase, increases salt tolerance in yeast and transgenic plants. Plant, Cell & Environment, 29, 1890–1900.
  • Pollier, J., Moses, T., González-Guzmán, M., De Geyter, N., Lippens, S., Bossche, R. V., … Goossens, A. (2013). The protein quality control system manages plant defence compound synthesis. Nature, 504, 148–152.
  • Rai, M. (2006). Refinement of the Citrus tristeza virus resistance gene (Ctv) positional map in Poncirus trifoliata and generation of transgenic grapefruit (Citrus paradisi) plant lines with candidate resistance genes in this region. Plant Molecular Biology, 61, 399–414.
  • Robert-Seilaniantz, A., Navarro, L., Bari, R., & Jones, J. D. (2007). Pathological hormone imbalances. Current Opinion in Plant Biology, 10, 372–379.
  • Rotter, A., Camps, C., Lohse, M., Kappel, C., Pilati, S., Hren, M., … Gruden, K. (2009). Gene expression profiling in susceptible interaction of grapevine with its fungal pathogen Eutypa lata: Extending MapMan ontology for grapevine. BMC Plant Biology, 9, 104.
  • Rouleau, M., Marsolais, F., Richard, M., Nicolle, L., Voigt, B., Adam, G., & Varin, L. (1999). Inactivation of brassinosteroid biological activity by a salicylate-inducible steroid sulfotransferase from Brassica napus. Journal of Biological Chemistry, 274, 20925–20930.
  • Staswick, P. E., Serban, B., Rowe, M., Tiryaki, I., Maldonado, M. T., Maldonado, M. C., & Suzaa, W. (2005). Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. The Plant Cell, 17, 616–627.
  • Thimm, O., Bläsing, O., Gibon, Y., Nagel, A., Meyer, S., Krüger, P., … Stitt, M. (2004). MAPMAN: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. The Plant Journal, 37, 914–939.
  • Torres, M. A., & Dangl, J. L. (2005). Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Current Opinion in Plant Biology, 8, 397–403.
  • Torres, M. A., Jones, J. D. G., & Dangl, J. L. (2006). Reactive oxygen species signaling in response to pathogens. Plant Physiology, 141, 373–378.
  • Vorwerk, S., Somerville, S., & Somerville, C. (2004). The role of plant cell wall polysaccharide composition in disease resistance. Trends in Plant Science, 9, 203–209.
  • Wang, D., Pan, Y., Zhao, X., Zhu, L., Fu, B., & Li, Z. (2011). Genome-wide temporal-spatial gene expression profiling of drought responsiveness in rice. BMC Genomics, 12, 149.
  • Weber, H. (2002). Fatty acid-derived signals in plants. Trends in Plant Science, 7, 217–224.
  • Xu, Q., Chen, -L.-L., Ruan, X., Chen, D., Zhu, A., Chen, C., … Ruan, Y. (2013). The draft genome of sweet orange (Citrus sinensis). Nat Genet, 45, 59–66.
  • Yang, F., Wang, G., Jiang, B., Liu, Y.-H., Liu, Y., Wu, G.-W., & Hong, N. (2013). Differentially expressed genes and temporal and spatial expression of genes during interactions between Mexican lime (Citrus aurantifolia) and a severe Citrus tristeza virus isolate. Physiological and Molecular Plant Pathology, 83, 17–24.
  • Zhang, J.-Z., Li, Z.-M., Yao, J.-L., & Hu, C.-G. (2009). Identification of flowering-related genes between early flowering trifoliate orange mutant and wild-type trifoliate orange (Poncirus trifoliata L. Raf.) by suppression subtraction hybridization (SSH) and macroarray. Gene, 430, 95–104.
  • Zhang, M., Barg, R., Yin, M., Gueta-Dahan, Y., Leikin-Frenkel, A., Salts, Y., … Ben-Hayyim, G. (2005). Modulated fatty acid desaturation via overexpression of two distinct ω-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants. The Plant Journal, 44, 361–371.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.