807
Views
14
CrossRef citations to date
0
Altmetric
Articles

Effects of microbubble generation methods and dissolved oxygen concentrations on growth of Japanese mustard spinach in hydroponic culture

, , , &
Pages 483-490 | Accepted 03 Oct 2017, Published online: 25 Oct 2017

References

  • Black, C.A. (1965). Methods of soil analysis part 2. Madison, WI: American Society of Agronomy.
  • Chun, C., & Takakura, T. (1994). Rate of root respiration of lettuce under various dissolved oxygen concentrations in hydroponics. Environmental Control in Biology, 32, 125–135. doi:10.2525/ecb1963.32.125
  • Frensch, J., & Hsiao, T.C. (1994). Transient responses of cell turgor and growth of maize roots as affected by changes in water potential. Plant Physiology, 104, 247–254. doi:10.1104/pp.104.1.247
  • Gill, R.K. (2016). Nutrient management for growing Dandelion (Taraxacum officinale L.) in nutrient film and deep flow hydroponics ( PhD Thesis). University of Arkansas.
  • Green, D.R. (2012). Means to an end. -Apoptosis and other cell death mechanisms- (pp. 109–124). Tokyo: Medical Science International. (In Japanese).
  • Ikeura, H., Kobayashi, F., & Tamaki, M. (2011a). Removal of residual pesticide, fenitrothion, in vegetables by using ozone microbubbles generated by different methods. Journal of Food Engineering, 103, 345–349. doi:10.1016/j.jfoodeng.2010.11.002
  • Ikeura, H., Kobayashi, F., & Tamaki, M. (2011b). Removal of residual pesticides in vegetables using ozone microbubbles. Journal of Hazardous Materials, 186, 956–959. doi:10.1016/j.jhazmat.2010.11.094
  • Ikeura, H., Takahashi, H., Kobayashi, F., Sato, M., & Tamaki, M. (2017). Effect of different microbubble generation methods on growth of Japanese mustard spinach. Journal of Plant Nutrition, 40, 115–127. doi:10.1080/01904167.2016.1201498
  • The Japanese Society for Food Science and Technology. (1996). Shin shokuhin bunsekihou. (pp. 647–650). Tokyo: Korin. (In Japanese).
  • Kaneko, K., Yoshii, M., Isobe, T., Park, J.-S., Kurata, K., & Fujiwara, K. (2009). Nutrient solution prepared with ozonated water does not damage early growth of hydroponically grown tomatoes. Ozone: Science & Engineering, 31, 21–27. doi:10.1080/01919510802587523
  • Kobayashi, F., Ikeura, H., Ohsato, S., Goto, T., & Tamaki, M. (2011a). Disinfection using ozone microbubbles to inactivate Fusarium oxysporum f. sp. melonis and Pectobacterium carotovorum subsp. carotovorum. Crop Protection, 30, 1514–1518. doi:10.1016/j.cropro.2011.07.018
  • Kobayashi, F., Ikeura, H., Ohsato, S., Goto, T., & Tamaki, M. (2012). Ozone microbubbles as a disinfection in nutrient solution, and their effects on the composition of fertilizer and the growth of cultivated plants. Transactions on Biomedical Engineering, 5, 137–146.
  • Kobayashi, F., Ikeura, H., Ohsato, S., & Tamaki, M. (2011b). Microbicidal effect of microbubbles with ozone, oxygen, and carbon dioxide against Fusarium oxysporum f. sp. melonis and Pectobacterium carotovorum subsp. carotovorum. Journal of Japanese Society of Agricultural Technology Management, 18, 123–128.
  • Koohakan, P., Ikeda, H., Kusakari, S., Masuda, T., Mano, K., & Masuda, R. (2003). Effects of TiO2 photocatalytic sterilizing system on the suppression of tomato root rot disease in the nutrient solution. Horticultural Research (Japan), 2, 215–219. Japanese with English abstract. doi:10.2503/hrj.2.215
  • Lockshin, R.A., & Zakeri, Z. (2004). Apoptosis, autophagy and more. The International Journal of Biochemistry & Cell Biology, 36, 2405–2419. doi:10.1016/j.biocel.2004.04.011
  • Morimoto, T., Masuda, T., & Nonami, H. (1989). Oxygen enrichment in deep Hydroponic culture improves growth of spinach. Environmental Control in Biology, 27, 97–102. doi:10.2525/ecb1963.27.97
  • Ogawa, A., Kitamichi, K., Toyofuku, K., & Kawashima, C. (2006). Quantitative analysis of cell division and cell death in seminal root of rye under salt stress. Plant Production Science, 9, 56–64. doi:10.1626/pps.9.56
  • Okumura, T., Saito, Y., Takano, K., Takahashi, K., Takaki, K., Satta, N., & Fujio, T. (2016). Inactivation of bacteria using discharge plasma under liquid fertilizer in a hydroponic culture system. Plasma Medicine, 6, 247–254. doi:10.1615/PlasmaMed.v6.i3-4
  • Park, J.S., & Kurata, K. (2009). Application of microbubble to hydroponics solution promotes lettuce growth. HortTechnology, 19, 212–215.
  • Park, J.S., Ohashi, K., Kurata, K., & Lee, J.W. (2010). Promotion of lettuce growth by application of microbubbles in nutrient solution using different rates of electrical conductivity and under periodic intermittent generation in a deep flow technique culture system. European Journal of Horticultural Science, 75, 198–203.
  • Sharp, R.E., & Davies, W.J. (1979). Solute regulation and growth by root and shoots of water-stressed maize plant. Plant Science, 147, 43–49.
  • Takahashi, M. (2003). Effect of shrinking microbubble on gas hydrate formation. Journal of Physical Chemistry B, 107, 2171–2173. doi:10.1021/jp022210z
  • Takahashi, M. (2005). ζ potential of microbubbles in aqueous solutions: Electrical properties of the gas−water interface. The Journal of Physical Chemistry B, 109, 21858–21864. doi:10.1021/jp0445270
  • Takahashi, M. (2007). Formation of hydroxyl radicals by collapsing ozone microbubbles under strongly acidic conditions. Journal of Physical Chemistry B, 111, 11443–11446. doi:10.1021/jp074727m
  • Takahashi, M. (2009). Base and technological application of micro-bubble and nanobubble. Materials Integration, 22, 2–19. (In Japanese).
  • Takahashi, M., & Chiba, K. (2007). Free-radical generation from collapsing microbubbles without a dynamic stimulus. Journal of Physical Chemistry B, 111, 1343–1347. doi:10.1021/jp0669254
  • Tanaka, G., Yamashita, Y., & Nakabayashi, K. (2001). Effect of super-saturated of dissolved oxygen on the growth of tomato plants and nutrient uptake in hydroponic culture. Journal of Society of High Technology in Agriculture, 13, 21–28. (In Japanese with English Abstract). doi:10.2525/jshita.13.21
  • Zheng, Y., Wang, L., & Dixon, M. (2007). An upper limit for elevated root zone dissolved oxygen concentration for tomato. Scientia Horticulturae, 113, 162–165. doi:10.1016/j.scienta.2007.03.011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.