467
Views
20
CrossRef citations to date
0
Altmetric
Articles

Effects of conifer wood biochar as a substrate component on ornamental performance, photosynthetic activity, and mineral composition of potted Rosa rugosa

, , &
Pages 519-528 | Accepted 08 Nov 2017, Published online: 03 Dec 2017

References

  • Altland, J.E., & Locke, J.C. (2012). Biochar affects macronutrient leaching from a soilless substrate. HortScience, 47, 1136–1140.
  • Altland, J.E., & Locke, J.C. (2013). Effect of biochar type on macronutrient retention and release from soilless substrate. HortScience, 48, 1397–1402.
  • Asai, H., Samson, B.K., Stephan, H.M., Songyikhangsuthor, K., Homma, K., Kiyono, Y., & Horie, T. (2009). Biochar amendment techniques for upland rice production in Northern Laos 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Research, 111, 81–84. doi:10.1016/j.fcr.2008.10.008
  • Baronti, S., Alberti, G., Delle Vedove, G., Di Gennaro, F., Fellet, G., Genesio, L., … Vaccari, F.P. (2010). The biochar option to improve plant yields: First results from some field and pot experiments in Italy. Italian Journal of Agronomy, 5, 3–11. doi:10.4081/ija.2010.3
  • Bass, A.M., Bird, M.I., Kay, G., & Muirhead, B. (2016). Soil properties, greenhouse gas emissions and crop yield under compost, biochar and co-composted biochar in two tropical agronomic systems. Science of Total Environment, 550, 459–470. doi:10.1016/j.scitotenv.2016.01.143
  • Bedussi, F., Zaccheo, P., & Crippa, L. (2015). Pattern of pore water nutrients in planted and non-planted soilless substrates as affected by the addition of biochars from wood gasification. Biology and Fertility of Soils, 51, 625–635. doi:10.1007/s00374-015-1011-6
  • Cirillo, C., Rouphael, Y., Caputo, R., Raimondi, G., Sifola, M.I., & De Pascale, S. (2016). Effects of high salinity and the exogenous application of an osmolyte on growth, photosynthesis, and mineral composition in two ornamental shrub. The Journal of Horticultural Science & Biotechnology, 91, 14–22. doi:10.1080/14620316.2015.1110988
  • Colla, G., Rouphael, Y., Cardarelli, M., Tullio, M., Rivera, C.M., & Rea, E. (2008). Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biology and Fertility of Soils, 44, 501–509. doi:10.1007/s00374-007-0232-8
  • Colla, G., Rouphael, Y., Jawad, R., Kumar, P., Rea, E., & Cardarelli, M. (2013). The effectiveness of grafting to improve NaCl and CaCl2 tolerance in cucumber. Scientia Horticulturae, 164, 380–391. doi:10.1016/j.scienta.2013.09.023
  • Conversa, G., Bonasia, A., Lazzizera, C., & Elia, A. (2015). Influence of biochar, mycorrhizal inoculation, and fertilizer rate on growth and flowering of Pelargonium (Pelargonium zonale L.) plants. Frontiers in Plant Science, 6, 429. doi:10.3389/fpls.2015.00429
  • Dispenza, V., De Pasquale, C., Fascella, G., Mammano, M.M., & Alonzo, G. (2016). Use of biochar as peat substitute for growing substrates of Euphorbia x lomi potted plants. Spanish Journal of Agricultural Research, 14, e0908. doi:10.5424/sjar/2016144-9082
  • Dumroese, R.K., Heiskanen, J., Englund, K., & Tervahauta, A. (2011). Pelleted biochar: Chemical and physical properties show potential use as a substrate in container nurseries. Biomass Bioenergy, 35, 2018–2027. doi:10.1016/j.biombioe.2011.01.053
  • Fascella, G. (2015). Growing substrates alternative to peat for ornamental plants. In M. Asaduzzaman (Ed.), Soilless culture - Use of substrates for the production of quality horticultural crops (pp. 47–68). Rijeka, Croatia: InTech.
  • Fornes, F., & Belda, R.M. (2016). Are biochar and hydrochar adequate materials as growth medium constituents? A summary of the research carried out at UPV. Acta Horticulturae, 1146, 243–250. doi:10.17660/ActaHortic.2016.1146.32
  • Graber, E.R., Harel, Y.M., Kolton, M., Cytryn, E., Silber, A., David, D.R., … Elad, Y. (2010). Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant and Soil, 337, 481–496. doi:10.1007/s11104-010-0544-6
  • Headlee, W.L., Brewer, C.E., & Hall, R.B. (2014). Biochar as a substitute for vermiculite in potting mix for hybrid poplar. Bioenergy Research, 7, 120–131. doi:10.1007/s12155-013-9355-y
  • Jayasinghe, G.Y. (2012). Synthetic soil aggregates as a potting medium for ornamental plant production. Journal of Plant Nutrition, 35, 1441–1456. doi:10.1080/01904167.2012.671406
  • Keiluweit, M., Nico, P.S., Johnson, M.G., & Kleber, M. (2010). Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental Science Technology, 44, 1247–1253. doi:10.1021/es9031419
  • Kiehl, P.A., Lieth, J.H., & Burger, D.W. (1992). Growth response of chrysanthemum to varios container medium moisture tension level. Journal of the American Society for Horticultural Science, 117, 224–229.
  • Laird, D.A., Brown, R.C., Amonette, J.E., & Lehmann, J. (2009). Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels, Bioproduction and Biorefinery, 3, 547–562. doi:10.1002/bbb.169
  • Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350–382.
  • Méndez, A., Paz-Ferreiro, J., Gil, E., & Gascó, G. (2015). The effect of paper sludge and biochar addition on brown peat and coir based growing media properties. Scientia Horticulturae, 193, 225–230. doi:10.1016/j.scienta.2015.07.032
  • Morales, M.M., Comerford, N., Guerrini, I.A., Falcão, N.P.S., & Reeves, J.B. (2013). Sorption and desorption of phosphate on biochar and biochar–Soil mixtures. Soil Use Management, 29, 306–314. doi:10.1111/sum.2013.29.issue-3
  • Nelson, N.O., Agudelo, S.C., Yuan, W.Q., & Gan, J. (2011). Nitrogen and phosphorus availability in biochar-amended soils. Soil Science, 176, 218–226.
  • Netto, A.T., Campostrini, E., De Oliveira, J.G., & Bressan-Smith, R.E. (2005). Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Scientia Horticulturae, 104, 199–209. doi:10.1016/j.scienta.2004.08.013
  • Nieto, A., Gascó, G., Paz-Ferreiro, J., Fernández, J.M., Plaza, C., & Méndez, A. (2016). The effect of pruning waste and biochar addition on brown peat based growing media properties. Scientia Horticulturae, 199, 142–148. doi:10.1016/j.scienta.2015.12.012
  • Norrie, J., Graham, M.E.D., & Gosselin, A. (1994). Potential evapotranspiration as a menas o predicting irrigation timing in greenhouse tomatoes grown in peat bags. Journal of the American Society for Horticultural Science, 119, 163–168.
  • Rondon, M.A., Lehmann, J., Ramírez, J., & Hurtado, M. (2007). Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biology and Fertility of Soils, 43, 699–708. doi:10.1007/s00374-006-0152-z
  • Rouphael, Y., Cardarelli, M., Rea, E., & Colla, G. (2012). Improving melon and cucumber photosynthetic activity, mineral composition, and growth performance under salinity stress by grafting onto Cucurbita hybrid rootstocks. Photosynthetica, 50, 180–188. doi:10.1007/s11099-012-0002-1
  • Rouphael, Y., De Micco, V., Arena, C., Raimondi, G., Colla, G., & De Pascale, S. (2017). Effect of Ecklonia maxima seaweed extract on yield, mineral composition, gas exchange and leaf anatomy of zucchini squash grown under saline conditions. Journal of Applied Phycology, 29, 459–470. doi:10.1007/s10811-016-0937-x
  • Sparinska, A., & Rostoks, N. (2012). Comparing ornamental and other quality traits of Rosa rugosa hybrids in Latvia. Acta Horticulturae, 953, 277–283. doi:10.17660/ActaHortic.2012.953.38
  • Street, T.A., Doyle, R.B., & Close, D.C. (2014). Biochar media addition impacts apple rootstock growth and nutrition. Hortscience, 49, 1188–1193.
  • Tian, Y., Sun, X., Li, S., Wang, H., Wang, L., Cao, J., & Zhang, L. (2012). Biochar made from green waste as peat substitute in growth media for Calathea rotundifola cv. Fasciata. Scientia Horticulturae, 143, 15–18. doi:10.1016/j.scienta.2012.05.018
  • Trazzi, P.A., Leahy, J.J., Hayes, M.H.B., & Kwapinski, W. (2016). Adsorption and desorption of phosphate on biochars. Journal of Environmental and Chemical Engineering, 4, 37–46. doi:10.1016/j.jece.2015.11.005
  • Vaughn, S.F., Kenar, J.A., Eller, F.J., Moser, B.R., Jackson, M.A., & Peterson, S.C. (2015). Physical and chemical characterization of biochars produced from coppiced wood of thirteen tree species for use in horticultural substrates. Industrial Crops and Products, 66, 44–51. doi:10.1016/j.indcrop.2014.12.026
  • Vaughn, S.F., Kenar, J.A., Thompson, A.R., & Peterson, S.C. (2013). Comparison of biochars derived from wood pellets and pelletized wheat straw as replacements for peat in potting substrates. Industrial Crops and Products, 51, 437–443. doi:10.1016/j.indcrop.2013.10.010
  • Xie, Y., & Zhang, W. (2012). Antihypertensive activity of Rosa rugosa Thunb. flowers: Angiotensin I converting enzyme inhibitor. Journal of Ethnopharmacology, 144, 562–566. doi:10.1016/j.jep.2012.09.038
  • Zaccheo, P., Crippa, L., & Cattivello, C. (2014). Liming power of different particle fractions of biochar. Acta Horticulturae, 1034, 363–368. doi:10.17660/ActaHortic.2014.1034.45
  • Zhang, L., Sun, X., Tian, Y., & Gong, X. (2014). Biochar and humic acid amendments improve the quality of composted green waste as a growth medium for the ornamental plant Calathea insignis. Scientia Horticulturae, 176, 70–78. doi:10.1016/j.scienta.2014.06.021
  • Zhang, L., Sun, X.Y., Tian, Y., & Gong, X.Q. (2013). Composted green waste as a substitute for peat in growth media: Effects on growth and nutrition of Calathea insignis. PLoS One, 8, e78121. doi:10.1371/journal.pone.0078121
  • Zhu, D., & Pignatello, J.J. (2005). Characterization of aromatic compound sorptive inter-actions with black carbon (charcoal) assisted by graphite as a model. Environmental Science Technology, 39, 2033–2041. doi:10.1021/es0491376

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.