539
Views
5
CrossRef citations to date
0
Altmetric
Articles

Transcriptome analysis of Oncidium petals provides new insights into the initiation of petal senescence

, , , , &
Pages 12-23 | Accepted 17 Jan 2018, Published online: 18 Feb 2018

References

  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W., & Lipman, D.J. (1990). Basic local alignment search tool. The Journal of Molecular Biology, 215, 403–410.
  • Audic, S., & Claverie, J.M. (1997). The significance of digital gene expression profiles. Genome Research, 7, 986–995.
  • Ay, N., Janack, B., & Humbeck, K. (2014). Epigenetic control of plant senescence and linked processes. Journal of Experimental Botany, 65, 3875–3887.
  • Battelli, R., Lombardi, L., Rogers, H.J., Picciarelli, P., Lorenzi, R., & Ceccarelli, N. (2011). Changes in ultrastructure, protease and caspase-like activities during flower senescence in Lilium longiflorum.. Plant Science, 180, 716–725.
  • Behera, T.K., Rao, A.R., Amarnath, R., & Kumar, R.R. (2016). Comparative transcriptome analysis of female and hermaphrodite flower buds in bitter gourd (Momordica charantia L.) by RNA sequencing. The Journal of Horticultural Science and Biotechnology, 91, 250–257.
  • Bendix, C., Marshall, C.M., & Harmon, F.G. (2015). Circadian clock genes universally control key agricultural traits. Molecular Plant, 8, 1135–1152.
  • Benjamini, Y., & Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Annals of Statistics, 29, 1165–1188.
  • Breeze, E., Wagstaff, C., Harrison, E., Bramke, I., Rogers, H., Stead, A., … Buchanan-Wollaston, V. (2004). Gene expression patterns to define stages of post-harvest senescence in Alstroemeria petals. Plant Biotechnology Journal, 2, 155–168.
  • Chen, M-K.., Hsu, W-H.., Lee, P-F.., Thiruvengadam, M., Chen, H-I.., & Yang, C-H.. (2011). The mads box gene, forever young flower, acts as a repressor controlling floral organ senescence and abscission in arabidopsis. Plant Journal, 68, 168-185. doi:10.1111/j.1365-313X.2011.04677.x.
  • Chen, Z., Zheng, Z., Huang, J., Lai, Z., & Fan, B. (2009). Biosynthesis of salicylic acid in plants. Plant Signaling & Behavior, 4, 493–496.
  • Chory, J., Nagpal, P., & Peto, C.A. (1991). Phenotypic and genetic analysis of det2, a new mutant that affects light-regulated seedling development in Arabidopsis. Plant Cell, 3, 445–459.
  • Choudhary, S.P., Yu, J.Q., Yamaguchi-Shinozaki, K., Shinozaki, K., & Tran, L.S. (2012). Benefits of brassinosteroid crosstalk. Trends in Plant Sciences, 17, 594–605.
  • Conesa, A., Götz, S., García-Gómez, J.M., Terol, J., Talón, M., & Robles, M. (2005). Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21, 3674–3676.
  • Covington, M.F., Maloof, J.N., Straume, M., Kay, S.A., & Harmer, S.L. (2008). Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biology, 9, R130.
  • Davalos, A.R., Kawahara, M., Malhotra, G.K., Schaum, N., Huang, J., Ved, U., … Campisi, J. (2013). p53-dependent release of Alarmin HMGB1 is a central mediator of senescent phenotypes. Journal of Cell Biology, 201, 613–629.
  • Depuydt, S., & Hardtke, C.S. (2011). Hormone signalling crosstalk in plant growth regulation. Current Biology, 21, R365–R373.
  • Eason, J.R., Ryan, D.J., Pinkney, T.T., & Òdonoghue, E.M. (2002). Programmed cell death during flower senescence: Isolation and characterization of cysteine proteinases from Sandersonia aurantiaca. Functional Plant Biology, 29, 1055–1064.
  • Feng, T., Lu, X., Liang, F., Li, A., & Lei, Y. (2017). Next generation sequencing reveals the potential functions of the genes involved in controlling several important commercial traits in peach (Prunus persica (L). Batsch) fruits. The Journal of Horticultural Science and Biotechnology, 1–10. doi:10.1080/14620316.2017.1361795
  • Fonseca, S., Chico, J.M., & Solano, R. (2009). The jasmonate pathway: The ligand, the receptor and the core signalling module. Current Opinion in Plant Biology, 12, 539–547.
  • Gallusci, P., Hodgman, C., Teyssier, E., & Seymour, G.B. (2016). DNA methylation and chromatin regulation during fleshy fruit development and ripening. Frontiers in Plant Science, 7, 807.
  • Gao, L.M., Zhang, J., Hou, Y., Yao, Y.C., & Ji, Q.L. (2015). RNA-Seq screening of differentially-expressed genes during somatic embryogenesis in Fragaria × ananassa Duch. ‘Benihopp’. The Journal of Horticultural Science and Biotechnology, 90, 671–681.
  • Grabherr, M.G., Haas, B.J., Levin, J.Z., Thompson, D.A., Amit, I., Adiconis, X., … Regev, A. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29, 644–652.
  • Greenham, K., & McClung, C.R. (2015). Integrating circadian dynamics with physiological processes in plants. Nature Reviews Genetics, 16, 598–610.
  • Guerrero, C., De La Calle, M., Reid, M.S., & Valpuesta, V. (1998). Analysis of the expression of two thiol protease genes from day lily (Hemerocallis) during flower senescence. Plant Molecular Biology, 36, 565–571.
  • Heo, S., Hwang, J.H., Jun, J.H., & Lee, H.J. (2016). Abscission-related genes revealed by RNA-Seq analysis using self-abscising apple (Malus × domestica). The Journal of Horticultural Science and Biotechnology, 91, 271–278.
  • Hoeberichts, F. A., van Doorn, W. G., Vorst, O., Hall, R. D., & van Wordragen, M. F. (2007). Sucrose prevents upregulation of senescence-associated genes in carnation petals. Journal Of Experimental Botany, 58, 2873-2885. doi:10.1093/jxb/erm076
  • Hopkins, M., Taylor, C., Liu, Z., Ma, F., McNamara, L., Wang, T.W., & Thompson, J.E. (2007). Regulation and execution of molecular disassembly and catabolism during senescence. New Phytologist, 175, 201–214.
  • Hunter, D.A., Steele, B.C., & Reid, M.S. (2002). Identification of genes associated with perianth senescence in daffodil (Narcissus pseudonarcissus L. ‘Dutch Master’). Plant Science, 163, 13–21.
  • Ichimura, K., & Niki, T. (2014). Ethylene production associated with petal senescence in carnation flowers is induced irrespective of the gynoecium. The Journal of Plant Physiology, 171, 1679–1684.
  • In, B.-C., Binder, B.M., Falbel, T.G., & Patterson., S.E. (2013). Analysis of gene expression during the transition to climacteric phase in carnation flowers (Dianthus caryophyllus L.). Journal of Experimental Botany, 64, 4923–4937.
  • Iseli, C., Jongeneel, C.V., & Bucher, P. (1999). Estscan: a program for detecting, evaluating and reconstructing potential coding regions in est sequences. In: Proceedings of the Intelligent Systems for Molecular Biology. AAAI Press, Menlo Park, CA, 138-148.
  • Jones, M. L. (2004). Changes in gene expression during senescence. In: Nooden, L. D. ed. plant cell death processes. Elsevier, Amsterdam, 51-71.
  • Jones, M.L., Larsen, P.B., & Woodson, W.R. (1995). Ethylene‐regulated expression of a carnation cysteine proteinase during flower petal senescence. Plant Molecular Biology, 28, 505–512.
  • Langmead, B., & Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9, 357–359.
  • Li, B., & Dewey, C.N. (2011). RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12, 323.
  • Li, -S.-S., Li, Q.-Z., Rong, L.-P., Tang, L., Wang, -J.-J., & Zhang, B. (2015). Analysis of the transcriptome of green and mutant golden-yellow leaves of Acer palmatum Thunb. using high-throughput RNA sequencing. The Journal of Horticultural Science and Biotechnology, 90, 388–394.
  • Liau, C.-H., You, S.-J., Prasad, V., Hsiao, -H.-H., Lu, J.-C., Yang, N.-S., & Chan, M.-T. (2003). Agrobacterium tumefaciens-mediated transformation of an Oncidium orchid. Plant Cell Reports, 21, 993–998.
  • Lin, Z., Yin, K., Wang, X., Liu, M., Chen, Z., Gu, H., & Qu, L.J. (2007). Virus induced gene silencing of AtCDC5 results in accelerated cell death in Arabidopsis leaves. Plant Physiology and Biochemistry, 45, 87–94.
  • Liu, J.-P., Xia, Z.-Q., Tian, X.-Y., & Li, Y.-J. (2015). Transcriptome sequencing and analysis of rubber tree (Hevea brasiliensis Muell.) to discover putative genes associated with tapping panel dryness (TPD). BMC Genomics, 16, 398.
  • Liu, J.-P., Zhuang, Y.-F., Guo, X.-L., & Li, Y.-J. (2016). Molecular mechanism of ethylene stimulation of latex yield in rubber tree (Hevea brasiliensis) revealed by de novo sequencing and transcriptome analysis. BMC Genomics, 17, 257.
  • Livak, K.J., & Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods (San Diego, Calif.), 25, 402–408.
  • Michael, M.Z., Savin, K.W., Baudinette, S.C., Graham, M.W., Chandler, S.F., Lu, C.-Y., … Cornish, E.C. (1993). Cloning of ethylene biosynthetic genes involved in petal senescence of carnation and petunia, and their antisense expression in transgenic plants. In: J.C. Pech, A. Latche, & C. Balague (Eds.), Cellular and molecular aspects of the plant hormone ethylene (pp. 298–303). Dordrecht: Kluwer.
  • Mistry, J., Finn, R.D., Eddy, S.R., Bateman, A., & Punta, M. (2013). Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Research, 41, e121.
  • Mizuno, T., & Yamashino, T. (2008). Comparative transcriptome of diurnally oscillating genes and hormone-responsive genes in Arabidopsis thaliana: Insight into circadian clock-controlled daily responses to common ambient stresses in plants. Plant Cell Physiology, 49, 481–487.
  • Nagel, D.H., & Kay, S.A. (2012). Complexity in the wiring and regulation of plant circadian networks. Current Biology, 22, R648–R657.
  • Nashima, K., Terakami, S., Nishitani, C., Yamamoto, T., Habu, T., Takahashi, H., … Shiratake, K. (2014). Transcriptome analysis of flower receptacles of the European pear (Pyrus communis L.) ‘La France’ and its giant fruit sport using next-generation sequencing technology. The Journal of Horticultural Science and Biotechnology, 89, 293–300.
  • Noh, Y.S., & Amasino, R.M. (1999). Regulation of developmental senescence is conserved between Arabidopsis and Brassica napus. Plant Molecular Biology, 41, 195–206.
  • Ozsolak, F., & Milos, P.M. (2011). RNA sequencing: Advances, challenges and opportunities. Nature Reviews Genetics, 12, 87–98.
  • Panavas, T., Pikula, A., Reid, P.D., Rubinstein, B., & Walker, E.L. (1999). Identification of senescence-associated genes from day lily petals. Plant Molecular Biology, 40, 237–248.
  • Paunesku, T., Mittal, S., Protić, M., Oryhon, J., Korolev, S.V., Joachimiak, A., & Woloschak, G.E. (2001). Proliferating cell nuclear antigen (PCNA): Ringmaster of the genome. International Journal of Radiation Biology, 77, 1007–1021.
  • Pertea, G., Huang, X., Liang, F., Antonescu, V., Sultana, R., Karamycheva, S., … Quackenbush, J. (2003). TIGR Gene Indices clustering tools (TGICL): A software system for fast clustering of large EST datasets. Bioinformatics, 19, 651–652.
  • Price, A. M., Aros Orellana, D. F., Salleh, F. M., Stevens, R., Acock, R., Buchanan-Wollaston, V., Stead, A. D., & Rogers, H. J. (2008). A comparison of leaf and petal senescence in wallflower reveals common and distinct patterns of gene expression and physiology. Plant Physiology, 147, 1898-1912. doi:10.1104/pp.108.120402.
  • Quevillon, E., Silventoinen, V., Pillai, S., Harte, N., Mulder, N., Apweiler, R., & Lopez, R. (2005). InterProScan: Protein domains identifier. Nucleic Acids Research, 33, W116–W120.
  • Rice, P., Longden, I., & Bleasby, A. (2000). EMBOSS: The European molecular biology open software suite. Trends in Genetics, 16, 276–277.
  • Rogers, H.J. (2006). Programmed cell death in floral organs: How and why do flowers die? Annals of Botany, 97, 309–315.
  • Rogers, H.J. (2013). From models to ornamentals: How is flower senescence regulated? Plant Molecular Biology, 82, 563–574.
  • Sakuraba, Y., Jeong, J., Kang, M.Y., Kim, J., Paek, N.C., & Choi, G. (2014). Phytochrome-interacting transcription factors PIF4 and PIF5 induce leaf senescence in Arabidopsis. Nature Communications, 5, 4636.
  • Salomé, P.A., To, J.P., Kieber, J.J., & McClung, C.R. (2006). Arabidopsis response regulators ARR3 and ARR4 play cytokinin-independent roles in the control of circadian period. Plant Cell, 18, 55–69.
  • Seo, P.J., & Mas, P. (2015). STRESSing the role of the plant circadian clock. Trends in Plant Sciences, 20, 230–237.
  • Seyfferth, C., & Tsuda, K. (2014). Salicylic acid signal transduction: The initiation of biosynthesis, perception and transcriptional reprogramming. Frontiers in Plant Science, 5, 697.
  • Shahri, W., & Tahir, I. (2011). Flower senescence-strategies and some associated events. Botany Review, 77, 152–184.
  • Shahri, W., & Tahir, I. (2014). Flower senescence: Some molecular aspects. Planta, 239, 277–297.
  • Shi, L.-S., & Liu, J.-P. (2016). Molecular cloning and expression analysis of an 1-aminocyclopropane-1-carboxylate synthase gene from Oncidium Gower Ramsey. Biochemical and Biophysical Research Communications, 469, 203–209.
  • Shi, L.-S., Sun, H., Tian, X.-Y., Wu, F.-H., Cai, X.-Q., Zhuang, Y.-F., & Liu, J.-P. (2016). Developmental stages of Oncidium Gower Ramsey flower. Journal of Tropical Biology, 7, 440–443,449.
  • ten Have, A., & Woltering, E. J. (1997). Ethylene biosynthetic genes are differentially expressed during carnation (dianthus caryophyllus l.) Flower Senescence. Plant Molecular Biology, 34, 89-97.
  • Tian, X.-Y., Shi, L.-S., Pan, Y.-W., & Liu, J.-P. (2015). Cloning and expression analysis of OnACO2 gene from Oncidium Gower Ramsey. Molecular Plant Breeding, 13, 1602–1610.
  • To, J.P., Haberer, G., Ferreira, F.J., Deruère, J., Mason, M.G., Schaller, G.E., … Kieber, J.J. (2004). Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell, 16, 658–671.
  • Tripathi, S.K., Singh, A.P., Sane, A.P., & Nath, P. (2009). Transcriptional activation of a 37 kDa ethylene responsive cysteine protease gene, RbCP1, is associated with protein degradation during petal abscission in rose. Journal of Experimental Botany, 60, 2035–2044.
  • Tripathi, S.K., & Tuteja, N. (2007). Integrated signaling in flower senescence: An overview. Plant Signaling & Behavior, 2, 437–445.
  • Valpuesta, V., Lange, N.E., Guerrero, C., & Reid, M.S. (1995). Up-regulation of a cysteine protease accompanies the ethylene-insensitive senescence of day lily (Hemerocallis) flowers. Plant Molecular Biology, 28, 575–582.
  • van Doorn, W.G., & Woltering, E.J. (2008). Physiology and molecular biology of petal senescence. Journal of Experimental Botany, 59, 453–480.
  • Van Verk, M.C., Hickman, R., Pieterse, C.M.J., & Van Wees, S.C.M. (2013). RNA-Seq: Revelation of the messengers. Trends in Plant Sciences, 18, 175–179.
  • Wagstaff, C., Leverentz, M.K., Griffiths, G., Thomas, B., Chanasut, U., Stead, A.D., & Rogers, H.J. (2002). Cysteine protease gene expression and proteolytic activity during senescence of Alstroemeria petals. Journal of Experimental Botany, 53, 233–240.
  • Wang, J., Ma, X.M., Kojima, M., Sakakibara, H., & Hou, B.K. (2011). N-glucosyltransferase UGT76C2 is involved in cytokinin homeostasis and cytokinin response in Arabidopsis thaliana. Plant and Cell Physiology, 52, 2200–2213.
  • Weiss, D., & Ori, N. (2007). Mechanisms of cross talk between gibberellin and other hormones. Plant Physiology, 144, 1240–1246.
  • Woo, H.R., Kim, J.H., Kim, J., Kim, J., Lee, U., Song, I.J., … Lim, P.O. (2010). The RAV1 transcription factor positively regulates leaf senescence in Arabidopsis. Journal of Experimental Botany, 61, 3947–3957.
  • Yaish, M.W., Colasanti, J., & Rothstein, S.J. (2011). The role of epigenetic processes in controlling flowering time in plants exposed to stress. Journal of Experimental Botany, 62, 3727–3735.
  • Yamada, T., Ichimura, K., Kanekatsu, M., & van Doorn, W.G. (2007). Gene expression in opening and senescing petals of morning glory (Ipomoea nil) flowers. Plant Cell Reports, 26, 823–835.
  • Yamasaki, K., Kigawa, T., Inoue, M., Yamasaki, T., Yabuki, T., Aoki, M., … Yokoyama, S. (2005). Solution structure of the major DNA-binding domain of Arabidopsis thaliana ethylene-insensitive3-like3. Journal of Molecular Biology, 348, 253–264.
  • Yang, G.-H., & Liu, J.-P. (2014a). Cloning and expression analysis of OnACO1 gene in Oncidium. Chinese Journal of Tropical Crops, 35, 693–699.
  • Yang, G.-H., & Liu, J.-P. (2014b). Isolation of an 1-aminocyclopropane-1-carboxylate synthase gene from Oncidium Gower Ramsey. Genetics and Molecular Research, 13, 8480–8488.
  • Yolcu, S., Li, X., Li, S., & Kim, Y.J. (2017). Beyond the genetic code in leaf senescence. Journal of Experimental Botany. doi:10.1093/jxb/erx401
  • Zhang, H.N., Shi, S.Y., Li, W.C., Shu, B., Liu, L.Q., Xie, J.H., & Wei, Y.Z. (2016). Transcriptome analysis of ‘Sijihua’ longan (Dimocarpus longan L.) based on next-generation sequencing technology. The Journal of Horticultural Science and Biotechnology, 91, 180–188.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.