391
Views
4
CrossRef citations to date
0
Altmetric
Articles

Selection and mechanism exploration for salt-tolerant genes in tomato

, , , , , & show all
Pages 171-183 | Accepted 01 Jun 2018, Published online: 13 Jul 2018

References

  • Almansouri, M., Kinet, J.M., &Lutts, S. (2001). Effect of salt and osmotic stresses on germination in durum wheat (triticum durum desf.). Plant & Soil, 231, 243–254.
  • Ashraf, M., Athar, H.R., Pjc, H.R., &Kwon, T.R. (2008). Some prospective strategies for improving crop salt tolerance. Advances in Agronomy, 97, 45–110.
  • Asins, M.J., Bretó, M.P., Cambra, M., &Carbonell, E.A. (1993). Salt tolerance in Lycopersicon species. I. Character definition and changes in gene expression. Theoretical and Applied Genetics, 86, 737–743.
  • Bohnert, H.J., Nelson, D.E., &Jensen, R.G. (1995). Adaptations to environmental stresses. Plant Cell, 7, 1099–1111.
  • Brauc, S., De, V.E., Claeys, M., Geuns, J.M., Höfte, M., & Angenon, G. (2012). Overexpression of arginase in Arabidopsis thaliana influences defence responses against Botrytis cinerea. Plant Biology, 14, 39–45.
  • Cabot, C., Sibole, J.V., Barceló, J., & Poschenrieder, C. (2009). Abscisic acid decreases leaf Na+exclusion in salt-treated Phaseolus vulgaris L. Journal of Plant Growth Regulation, 28, 187–192.
  • Cakir, B., Agasse, A., Gaillard, C., Saumonneau, A., Delrot, S., & Atanassova, R. (2003). A grape ASR protein involved in sugar and abscisic acid signaling. Plant Cell, 15, 2165–2180.
  • Chakrabarti, N., & Mukherji, S. (2003). Effect of phytohormone pretreatment on nitrogen metabolism in Vigna radiata under salt stress. Biologia Plantarum, 46, 63–66.
  • Cramer, G.R., & Quarrie, S.A. (2002). Abscisic acid is correlated with the leaf growth inhibition of four genotypes of maize differing in their response to salinity. Functional Plant Biology, 29, 111–115.
  • Cuartero, J., Bolarin, M.C., Asins, M.J., & Moreno, V. (2006). Increasing salt tolerance in the tomato. Journal of Experimental Botany, 57, 1045–1058.
  • Duan, J., Zhang, M., Zhang, H., Xiong, H., Liu, P., Ali, J., … Li, Z. (2012). OsMIOX, a myo-inositol oxygenase gene, improves drought tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.). Plant Science, 196, 143–151.
  • Flores, T., Todd, C.D., Tovar-Mendez, A., Dhanoa, P.K., Correa-Aragunde, N., &Hoyos, M.E. (2008). Arginase-negative mutants of Arabidopsis exhibit increased nitric oxide signaling in root development. Plant Physiology, 147, 1936–1946.
  • Frugis, G., &Chua, N.H. (2002). Ubiquitin-mediated proteolysis in plant hormone signal transduction. Trends in Cell Biology, 12, 307–311.
  • Ganguly, M., Datta, K., Roychoudhury, A., Gayen, D., Sengupta, D.N., & Datta, S.K. (2012). Overexpression of Rab16A gene in indica rice variety for generating enhanced salt tolerance. Plant Signaling & Behavior, 7, 502–509.
  • Hadiarto, T., &Tran, L.S. (2011). Progress studies of drought-responsive genes in rice. Plant Cell Reports, 30, 297−310.
  • Henry, I.M., Carpentier, S.C., Pampurova, S., Van, H.A., Panis, B., Swennen, R., &Remy, S. (2011). Structure and regulation of the ASR gene family in banana. Planta, 234, 785–798.
  • Houle, G., Morel, L., Reynolds, C.E., &Siegel, J. (2001). The effect of salinityon different developmental stages of an endemic annual plant, Aster laurentianus (Asteraceae). American Journal of Botany, 88, 62–67.
  • Jithesh, M.N., Prashanth, S.R., Sivaprakash, K.R., &Parida, A.K. (2006). Antioxidative response mechanisms in halophytes: Their role in stress defiance. Journal of Genetics, 85, 237–254.
  • Joo, J., Lee, Y.H., Kim, Y.K., Nahm, B.H., &Song, S.I. (2013). Abiotic stress responsive rice ASR1and ASR3 exhibit different tissue-dependent sugar and hormone-sensitivities. Molecules & Cells, 35, 421–435.
  • Kang, D., Seo, Y., Lee, J.D., Ishii, R., Kim, K.U., Shin, D.H., … Lee, I. (2005). Jasmonic Acid differentially affects growth, ion uptake and abscisic acid concentration in salt-tolerant and salt-sensitive rice cultivars. Journal of Agronomy and Crop Science, 191, 273−282.
  • Kim, J., Ahn, M.S., Park, Y.M., Kim, S.W., Min, S.R., Jeong, W.J., … Liu, J.R. (2014). Synechocystis PCC6803 and PCC6906 dnaK2 expression confers salt and oxidative stress tolerance in Arabidopsis via reduction of hydrogen peroxide accumulation. Molecular Biology Reports, 41, 1091–1101.
  • Kou, X., Mao, C., Wu, M., Han, L., Jiang, B., & Xue, Z.H. (2016). Divergent functions of SNAC4-9 and possible mechanisms for tomato adaptation to abiotic stresses. The Journal of Horticulture Horticultural Science & Biotechnology, 92, 11–24.
  • Kurusu, T., Kuchitsu, K., & Tada, Y. (2015). Plant signaling networks involving Ca2+ and Rboh/Nox-mediated ROS production under salinity stress. Frontiers in Plant Science, 6, 427.
  • Kusvuran, S., Ellialtioglu, S., & Polat, Z. (2013). Antioxidative enzyme activity, lipid peroxidation, and proline accumulation in the callus tissues of salt and drought tolerant and sensitive pumpkin genotypes under chilling stress. Horticulture Environment & Biotechnology, 54, 319–325.
  • Liu, H., Yu, C., Li, H., Ouyanga, B., Wang, T., Zhang, J., … Ye, Z. (2015). Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato. Plant Science, 231, 198–211.
  • Luo, M.B., & Liu, F. (2011). Salinity-induced oxidative stress and regulation of antioxidant defense system in the marine macroalga Ulva Prolifer.Journal of Experimental Marine Biology and Ecology, 409, 223–228.
  • Mani, S., Cotte, B.V.D., Montagu, M.V., & Verbruggen, N. (2002). Altered levels of proline dehydrogenase cause hypersensitivity to proline and its analogs in arabidopsis. Plant Physiology, 128, 73.
  • Meloni, A.D., Gulotta, R.M., Martínez, A.C., & Oliva, A.M. (2004). The effects of salt stress on growth, nitrate reduction and proline and glycinebetaine accumulation in prosopis alba. Brazilian Journal of Plant Physiology, 16, 39–46.
  • Miller, G., Suzuki, N., Cıftcıyiılmaz, S., & Mittler, R. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell & Environment, 33, 453–467.
  • Muchate, N.S., Nikalje, G.C., Rajurkar, N.S., Suprasanna, P., & Nikam, T.D. (2016). Plant salt stress: Adaptive responses, tolerance mechanism and bioengineering for salt tolerance. Botanical Review, 82, 1–36.
  • Munns, R., &Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.
  • Niewiadomska, E., Karpinska, B., Romanowska, E., Slesak, I., &Karpinski, S. (2004). A salinity-induced c3-cam transition increases energy conservation in the halophyte mesembryanthemum crystallinum l. Plant & Cell Physiology, 45, 789–794.
  • Raghavendra, A.S., Gonugunta, V.K., Christmann, A., & Grill, E. (2010). ABA perception and signalling. Trends in Plant Science, 15, 395–401.
  • Ryu, H., & Cho, Y.G. (2015). Plant hormones in salt stress tolerance. Journal of Plant Biology, 58, 147–155.
  • Shen, G., Pang, Y., Wu, W., Deng, Z., Liu, X., Lin, J., … Tang, K. (2005). Molecular cloning, characterization and expression of a novel asr gene from ginkgo biloba. Plant Physiology & Biochemistry Ppb, 43, 836–843.
  • Shi, H., Ye, T., Chen, F., Cheng, Z., Wang, Y., Yang, P., … Chan, L. (2013). Manipulation of arginase expression modulates abiotic stress tolerance in arabidopsis: Effect on arginine metabolism and ros accumulation. Journal of Experimental Botany, 64, 1367.
  • Shkolnik, D., & Bar-Zvi, D. (2008). Tomato asr1 abrogates the response to abscisic acid and glucose in arabidopsis by competing with abi4 for dna binding. Plant Biotechnology Journal, 6, 368–378.
  • Sivritepe, N., Sivritepe, H.O., & Eris, A. (2003). The effects of nacl priming on salt tolerance in melon seedlings grown under saline conditions. Scientia Horticulturae, 97, 229–237.
  • Sreenivasulu, N., Ramanjulu, S., Ramachandra-Kini, K., Prakash, H.S., Shekar-Shetty, H., Savithri, H.S., & Sudhakar, C. (1999). Total peroxidase activity and peroxidase isoforms as modified by salt stress in two cultivars of fox-tail millet with differential salt tolerance. Plant Science, 141, 1–9.
  • Szabados, L., & Savouré, A. (2010). Proline: A multifunctional amino acid. Trends in Plant Science, 15, 89–97.
  • Wang, B., Zhai, H., He, S., Zhang, H., Ren, Z., Zhang, D., & Liu, Q. (2016). A vacuolar Na+/H+, antiporter gene, ibnhx2, enhances salt and drought tolerance in transgenic sweetpotato. Scientia Horticulturae, 201, 153–166.
  • Wang, L.M., Zhang, L.D., Chen, J.B., Huang, D.F., & Zhang, Y.D. (2016). Physiological analysis and transcriptome comparison of two muskmelon (cucumis melo l.) cultivars in response to salt stress. Genetics & Molecular Research, 15. doi:10.4238/gmr.15038738
  • Wang, Y., Gu, W., Yao, M., Xie, T., Li, L., Li, J., & Wei, S. (2017). γ-aminobutyric acid imparts partial protection from salt stress injury to maize seedlings by improving photosynthesis and upregulating osmoprotectants and antioxidants. Scientific Reports, 7, 43609.
  • Zhang, J., Jia, W., Yang, J., & Ismail, A.M. (2006). Role of aba in integrating plant responses to drought and salt stresses. Field Crops Research, 97, 111–119.
  • Zhang, Z., Mao, C., Shi, Z., & Kou, X. (2017). The amino acid metabolic and carbohydrate metabolic pathway play important roles during salt-stress response in tomato. Frontiers in Plant Science, 8, 1231.
  • Zhu, M., Chen, G., Zhang, J., Zhang, Y., Xie, Q., Zhao, Z., … Hu, Z. (2014). The abiotic stress-responsive nac-type transcription factor slnac4 regulates salt and drought tolerance and stress-related genes in tomato (solanum lycopersicum). Plant Cell Reports, 33, 1851–1863.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.