232
Views
1
CrossRef citations to date
0
Altmetric
Articles

Expression analysis suggests potential roles for PH-LIKE (PHL) genes in diploid strawberry Fragaria vesca L. seedling hormone response and fruit development

, , &
Pages 151-159 | Accepted 02 Jul 2018, Published online: 25 Jul 2018

References

  • Aprile, A., Federici, C., Close, T.J., De Bellis, L., Cattivelli, L., & Roose, M.L. (2011). Expression of the H+-ATPase AHA10 proton pump is associated with citric acid accumulation in lemon juice sac cells. Functional & Integrative Genomics, 11, 551–563.
  • Bai, Y., Dougherty, L., Cheng, L., Zhong, G.Y., & Xu, K. (2015). Uncovering co-expression gene network modules regulating fruit acidity in diverse apples. BMC Genomics, 16, 612.
  • Centeno, D.C., Osorio, S., Nunes-Nesi, A., Bertolo, A.L., Carneiro, R.T., Araujo, W.L., … Fernie, A.R. (2011). Malate plays a crucial role in starch metabolism, ripening, and soluble solid content of tomato fruit and affects postharvest softening. The Plant Cell, 23, 162–184.
  • Cohen, S., Itkin, M., Yeselson, Y., Tzuri, G., Portnoy, V., Harel-Baja, R., … Schaffer, A.A. (2014). The PH gene determines fruit acidity and contributes to the evolution of sweet melons. Nature Communications, 5, 4026.
  • Etienne, A., Genard, M., Lobit, P., Mbeguie, A.M.D., & Bugaud, C. (2013). What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. Journal of Experimental Botany, 64, 1451–1469.
  • Feraru, E., Vosolsobe, S., Feraru, M.I., Petrasek, J., & Kleine-Vehn, J. (2012). Evolution and Structural Diversification of PILS Putative Auxin Carriers in Plants. Frontiers in Plant Science, 3, 227.
  • Hu, D.G., Li, Y.Y., Zhang, Q.Y., Li, M., Sun, C.H., Yu, J.Q., & Hao, Y.J. (2017). The R2R3-MYB transcription factor MdMYB73 is involved in malate accumulation and vacuolar acidification in apple. The Plant Journal, 91, 443–454.
  • Hu, D.G., Sun, C.H., Ma, Q.J., You, C.X., Cheng, L., & Hao, Y.J. (2016). MdMYB1 regulates anthocyanin and malate accumulation by directly facilitating their transport into vacuoles in apples. Plant Physiology, 170, 1315–1330.
  • Huang, D., Zhao, Y., Cao, M., Qiao, L., & Zheng, Z.-L. (2016). Integrated systems biology analysis of transcriptomes reveals candidate genes for acidity control in developing fruits of sweet orange (Citrus sinensis L. Osbeck). Frontiers in Plant Science, 7, 486.
  • Kang, C., Darwish, O., Geretz, A., Shahan, R., Alkharouf, N., & Liu, Z. (2013). Genome-scale transcriptomic insights into early-stage fruit development in woodland strawberry Fragaria vesca. Plant Cell, 25, 1960–1978. doi:10.1105/tpc.113.111732
  • Ma, B., Liao, L., Zheng, H., Chen, J., Wu, B., Ogutu, C., … Han, Y. (2015). Genes encoding aluminum-activated malate transporter II and their association with fruit acidity in apple. The Plant Genome, 8, 14.
  • Medina-Puche, L., Blanco-Portales, R., Molina-Hidalgo, F.J., Cumplido-Laso, G., Garcia-Caparros, N., Moyano-Canete, E., … Rodriguez-Franco, A. (2016). Extensive transcriptomic studies on the roles played by abscisic acid and auxins in the development and ripening of strawberry fruits. Functional & Integrative Genomics, 16, 671–692.
  • Morgan, M.J., Osorio, S., Gehl, B., Baxter, C.J., Kruger, N.J., Ratcliffe, R.G., … Sweetlove, L.J. (2013). Metabolic engineering of tomato fruit organic acid content guided by biochemical analysis of an introgression line. Plant Physiology, 161, 397–407.
  • Osorio, S., Alba, R., Nikoloski, Z., Kochevenko, A., Fernie, A.R., & Giovannoni, J.J. (2012). Integrative comparative analyses of transcript and metabolite profiles from pepper and tomato ripening and development stages uncovers species-specific patterns of network regulatory behavior. Plant Physiology, 159, 1713–1729.
  • Paul, V., Pandey, R., & Srivastava, G.C. (2012). The fading distinctions between classical patterns of ripening in climacteric and non-climacteric fruit and the ubiquity of ethylene-An overview. Journal of Food Science and Technology, 49, 1–21.
  • Qiao, L., Cao, M., Zheng, J., Zhao, Y., & Zheng, Z.L. (2017). Gene coexpression network analysis of fruit transcriptomes uncovers a possible mechanistically distinct class of sugar/acid ratio-associated genes in sweet orange. BMC Plant Biology, 17, 186.
  • Qiao, L., Cao, M., Zheng, J., & Zheng, Z.-L. (2016). Adavnaces in molecular genetic and systems biology studies of fruit acidity control. South China Fruits, 158–163.
  • Sheng, L., Shen, D., Yang, W., Zhang, M., Zeng, Y., Xu, J., … Cheng, Y. (2017). GABA pathway rate-limit citrate degradation in postharvest citrus fruit evidence from HB Pumelo (Citrus grandis) x Fairchild (Citrus reticulata) hybrid population. Journal of Agricultural and Food Chemistry, 65, 1669–1676.
  • Shulaev, V., Sargent, D.J., Crowhurst, R.N., Mockler, T.C., Folkerts, O., Delcher, A.L., … Folta, K.M. (2011). The genome of woodland strawberry (Fragaria vesca). Nature Genetics, 43, 109–116.
  • Slovin, J.P., Schmitt, K., & Folta, K.M. (2009). An inbred line of the diploid strawberry Fragaria vesca f. semperflorens for genomic and molecular genetic studies in the Rosaceae. Plant Methods, 5, 15.
  • Wu, J., Xu, Z., Zhang, Y., Chai, L., Yi, H., & Deng, X. (2014). An integrative analysis of the transcriptome and proteome of the pulp of a spontaneous late-ripening sweet orange mutant and its wild type improves our understanding of fruit ripening in citrus. Journal of Experimental Botany, 65, 1651–1671.
  • Ye, J., Wang, X., Hu, T., Zhang, F., Wang, B., Li, C., … Ye, Z. (2017). An InDel in the Promoter of Al-activated malate transporter9 selected during tomato domestication determines fruit malate contents and aluminum tolerance. The Plant cell, 29, 2249–2268.
  • Yu, K., Xu, Q., Da, X., Guo, F., Ding, Y., & Deng, X. (2012). Transcriptome changes during fruit development and ripening of sweet orange (Citrus sinensis). BMC Genomics, 13, 10.
  • Zhang, J., Wang, X., Yu, O., Tang, J., Gu, X., Wan, X., & Fang, C. (2011). Metabolic profiling of strawberry (Fragaria x ananassa Duch.) during fruit development and maturation. Journal of Experimental Botany, 62, 1103–1118.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.