296
Views
8
CrossRef citations to date
0
Altmetric
Articles

Transcriptome analysis of Lilium Oriental × Trumpet hybrid roots reveals auxin-related genes and stress-related genes involved in picloram-induced somatic embryogenesis induction

, , , , , , & show all
Pages 317-330 | Accepted 27 Jun 2018, Published online: 21 Aug 2018

References

  • Azadi, P., Chin, D.P., Kuroda, K., Khan, R.S., & Mii, M. (2010). Macro elements in inoculation and co-cultivation medium strongly affect the efficiency of Agrobacterium-mediated transformation in Lilium. Plant Cellular Tiss Organic Cultural, 101, 201–209.
  • Bakhshaie, M., Babalar, M., Mirmasoumi, M., & Khalighi, A. (2010). Somatic embryogenesis and plant regeneration of Lilium ledebourii (Baker) Boiss., an endangered species. Plant Cellular Tiss Organic Cultural, 102, 229–235.
  • Boutilier, K., Offringa, R., Sharma, V.K., Kieft, H., Ouellet, T., Zhang, L., … Van Lookeren Campagne, M. M. (2002). Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. The Plant Cell, 14, 1737–1749.
  • Braybrook, S.A., & Harada, J. J. (2008). LECs go crazy in embryo development. Trends in Plant Science, 13, 624–630.
  • Braybrook, S.A., Stone, S.L., Park, S., Bui, A.Q., Le, B.H., Fischer, R.L., … Harada, J. J. (2006). Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis. Proceedings National Academic Sciences USA, 103, 3468–3473.
  • Corredoira, E., Ballester, A., Ibarra, M., & Vieitez, A. M. (2015). Induction of somatic embryogenesis in explants of shoot cultures established from adult Eucalyptus globulus and E. saligna × E. maidenii trees. Tree Physiology, 35, 678–690.
  • Curaba, J., Moritz, T., Blervaque, R., Parcy, F., Raz, V., Herzog, M., & Vachon, G. (2004). AtGA3ox2, a key gene responsible for bioactive gibberellin biosynthesis, is regulated during embryogenesis by LEAFY COTYLEDON2 and FUSCA3 in Arabidopsis. Plant Physiology, 136, 3660–3669.
  • Duval, M., Hsieh, T.F., & Thomas, T. L. (2002). Molecular characterization of AtNAM: A member of the Arabidopsis NAC domain superfamily. Plant Molecular Biology, 50, 237–248.
  • Fan, M., Xu, C., Xu, K., & Hu, Y. (2012). Lateral organ boundaries domain transcription factors direct callus formation in Arabidopsis regeneration. Cell Research, 22, 1169–1180.
  • Fujita, M., Fujita, Y., Noutoshi, Y., Takahashi, F., Narusaka, Y., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2006). Crosstalk between abiotic and biotic stress responses: A current view from the points of convergence in the stress signaling networks. Current Opinion in Plant Biology, 9, 436–442.
  • Gazzarrini, S., Tsuchiya, Y., Lumba, S., Okamoto, M., & McCourt, P. (2004). The transcription factor FUSCA3 controls developmental timing in Arabidopsis through the hormones gibberellin and abscisic acid. Developmental Cell, 7, 373–385.
  • Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J., Thompson, D., Amit, I., … Regev, A. (2011). Full-length transcriptome assembly from RNA-seq data without a reference genome. Nature Biotechnology, 29, 644–652.
  • Guilfoyle, T.J., & Hagen, G. (2007). Auxin response factors. Current Opinion in Plant Biology, 10, 453–460.
  • Hecht, V., Vielle-Calzada, J.P., Hartog, M.V., Schmidt, E.D.L., Boutilier, K., Grossniklaus, U., & De Vries, S. C. (2001). The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiology, 127, 803–816.
  • Horstman, A., Li, M., Heidmann, I., Weemen, M., Chen, B., Muino, J.M., … Boutilier, K. (2017). The BABY BOOM transcription factor activates the LEC1-ABI3-FUS3-LEC2 network to induce somatic embryogenesis. Plant Physiology, 175, 848–857.
  • Ikeda-Iwai, M., Umehara, M., Satoh, S., & Kamada, H. (2003). Stress-induced somatic embryogenesis in vegetative tissues of Arabidopsis thaliana. The Plant Journal : for Cell and Molecular Biology, 34, 107–114.
  • Ikeuchi, M., Sugimoto, K., & Iwase, A. (2013). Plant callus: Mechanisms of induction and repression. The Plant Cell, 25, 3159–3173.
  • Junker, A., & Bäumlein, H. (2012). Multifunctionality of the LEC1 transcription factor during plant development. Plant Signaling & Behavior, 7, 1718–1720.
  • Karalija, E., Trbojević, S., & Parić, A. (2010). Somatic embryogenesis and in vitro plantlet regeneration of Lilium martagon L. var. cattaniae Vis. Biologica Nyssana, 1, 57–60.
  • Karami, O., & Saidi, A. (2010). The molecular basis for stress-induced acquisition of somatic embryogenesis. Molecular Biology Reports, 37, 2493–2507.
  • Karlova, R., Boeren, S., Russinova, E., Aker, J., Vervoort, J., & De Vries, S. (2006). The Arabidopsis somatic embryogenesis receptor-like kinase1 protein complex includes brassinosteroid-insensitive1. The Plant Cell, 18, 626–638.
  • Kikuchi, A., Sanuki, N., Higashi, K., Koshiba, T., & Kamada, H. (2006). Abscisic acid and stress treatment are essential for the acquisition of embryogenic competence by carrot somatic cells. Planta, 223, 637–645.
  • Kiyosue, T., Takano, K., Kamada, H., & Harada, H. (1990). Induction of somatic embryogenesis in carrot by heavy metal ions. Canadian Journal of Botany, 68, 2301–2303.
  • Lee, K., Park, O.S., & Seo, P. J. (2016). RNA-Seq analysis of the Arabidopsis transcriptome in pluripotent calli. Molecules and Cells, 39, 484–494.
  • Li, B., & Dewey, C. N. (2011). RSEM: Accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinform, 12, 323.
  • Li, W.F., Ding, Q., Chen, J.J., Cui, K.M., & He, X. Q. (2009). Induction of PtoCDKB and PtoCYCB transcription by temperature during cambium reactivation in Populus tomentosa. Carr Journal Experiments Botanic, 60, 2621–2630.
  • Lin, H.C., Morcillo, F., Dussert, S., Tranchant-Dubreuil, C., Tregear, J.W., & Tranbarger, T. J. (2009). Transcriptome analysis during somatic embryogenesis of the tropical monocot Elaeis guineensis: Evidence for conserved gene functions in early development. Plant Molecular Biology, 70, 173–192.
  • Lowe, K., Wu, E., Wang, N., Hoerster, G., Hastings, C., Cho, M.J., … Gordon-Kamm, W. J. (2016). Morphogenic regulators Baby boom and Wuschel improve monocot transformation. The Plant Cell, 28, 1998–2015.
  • Lu, W., Enomoto, K., Fukunaga, Y., & Kuo, C. (1988). Regeneration of tepals, stamens and ovules in explants from perianth of Hyacinthus orientalis L. importance of explants age and exogenous hormones. Planta, 175, 478–484.
  • Mao, X., Cai, T., Olyarchuk, J.G., & Wei, L. (2005). Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics, 21, 3787–3793.
  • Mori, S., Adachi, Y., Horimoto, S., Suzuki, S., & Nakano, M. (2005). Callus formation and plant regeneration in various Lilium species and cultivars. Vitro Cellular Developments Biol-Plant, 41, 783–788.
  • Nishiwaki, M., Fujino, K., Koda, Y., Masuda, K., & Kikuta, Y. (2000). Somatic embryogenesis induced by the simple application of abscisic acid to carrot (Daucus carota L.) seedlings in culture. Planta, 211, 756–759.
  • Nolan, K.E., Saeed, N.A., & Rose, R. J. (2006). The stress kinase gene MtSK1 in Medicago truncatula with particular reference to somatic embryogenesis. Plant Cell Reports, 25, 711–722.
  • Okushima, Y., Fukaki, H., Onoda, M., Theologis, A., & Tasaka, M. (2007). ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. The Plant Cell, 19, 118–130.
  • Ouakfaoui, S.E., Schnell, J., Abdeen, A., Colville, A., Labbe´, H., Han, S., … Miki, B. (2010). Control of somatic embryogenesis and embryo development by AP2 transcription factors. Plant Molecular Biology, 74, 313–326.
  • Pitto, L., Lo Schiavo, F., Giuliano, G., & Terzi, M. (1983). Analysis of the heat-shock protein pattern during somatic embryogenesis of carrot. Plant Molecular Biology, 2, 231–237.
  • Prado, M.J., Largo, A., Domínguez, C., González, M.V., Rey, M., & Centeno, M. L. (2014). Determination of abscisic acid and its glucosyl ester in embryogenic callus cultures of Vitis vinifera in relation to the maturation of somatic embryos using a new liquid chromatography-ELISA analysis method. Journal of Plant Physiology, 171, 852–859.
  • Rode, C., Lindhorst, K., Braun, H.P., & Winkelmann, T. (2012). From callus to embryo: A proteomic view on the development and maturation of somatic embryos in Cyclamen persicum. Planta, 235, 995–1011.
  • Savona, M., Mattioli, R., Nigro, S., Falasca, G., Della Rovere, F., Costantino, P., … Altamura, M. M. (2012). Two SERK genes are markers of pluripotency in Cyclamen persicum Mill. Journal of Experimental Botany, 63, 471–488.
  • Schellenbaum, P., Jacques, A., Maillot, P., Bertsch, C., Mazet, F., Farine, S., & Walter, B. (2008). Characterization of VvSERK1, VvSERK2, VvSERK3 and VvL1 L genes and their expression during somatic embryogenesis of grapevine (Vitis vinifera L.). Plant Cell Reports, 27, 1799–1809.
  • Schlereth, A., Möller, B., Liu, W., Kientz, M., Flipse, J., Rademacher, E.H., … Weijers, D. (2010). MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Nature, 464, 913–916.
  • Senger, S., Mock, H.-P., Conrad, U., & Manteuffel, R. (2001). Immunomodulation of ABA function affects early events in somatic embryo development. Plant Cell Reports, 20, 112–120.
  • Shah, M.M., Khalid, Q., Khan, U.W., Shah, S.A.H., Shah, S.H., Hassan, A., & Pervez, A. (2009). Variation in genotypic responses and biochemical analysis of callus induction in cultivated wheat. Genetics and Molecular Research : GMR, 8, 783–793.
  • Shivani, A., Sharma, P., Kaur, V., Kaur, N., Pandey, N., & Tiwari, S. (2017). Genome-wide analysis of transcription factors during somatic embryogenesis in banana (Musa spp.) cv. Grand Naine. Plos One, 12, e0182242.
  • Stone, S.L., Braybrook, S.A., Paula, S.L., Kwong, L.W., Meuser, J., Pelletier, J., … Harada, J. J. (2008). Arabidopsis LEAFY COTYLEDONE 2 induces maturation traits and auxin activity: Implications for somatic embryogenesis. Proceedings National Academic Sciences USA, 105, 3151–3156.
  • Sun, L., Wu, Y., Su, S., Liu, H., Yang, G., Li, S., … Yuan, Y. (2012). Differential gene expression during somatic embryogenesis in the maize (Zea mays L.) inbred line H99. Plant Cellular Tiss Organic Cultural, 109, 271–286.
  • Tomiczak, K., Mikula, A., Sliwinska, E., & Rybczyński, J. J. (2015). Autotetraploid plant regeneration by indirect somatic embryogenesis from leaf mesophyll protoplasts of diploid Gentiana decumbens L.f. In Vitro Cellular Developments Biol-Plant, 51, 350–359.
  • Tribulato, A., Remotti, P.C., Löffler, H.J.M., & Van Tuyl, J. M. (1997). Somatic embryogenesis and plant regeneration in Lilium longiflorum Thunb. Plant Cell Reports, 17, 113–118.
  • von Arnold, S., Sabala, I., Bozhkov, P., Dyachok, J., & Filonova, L. (2002). Developmental pathways of somatic embryogenesis. Plant Cellular Tiss Organization Cultural, 69, 233–249.
  • Wang, X., Niu, Q.W., Teng, C., Li, C., Mu, J., Chua, N.H., & Zuo, J. (2009). Overexpression of PGA37/MYB118 and MYB115 promotes vegetative-to-embryonic transition in Arabidopsis. Cell Research, 19, 224–235.
  • Wang, Y., Van Kronenburg, B., Menzel, T., Maliepaard, C., Shen, X., & Krens, F. (2012). Regeneration and Agrobacterium-mediated transformation of multiple lily cultivars. Plant Cellular Tiss Organization Cultural, 111, 113–122.
  • Xu, L., & Huang, H. (2014). Genetic and epigenetic controls of plant regeneration. Current Topics in Developmental Biology, 108, 1–33.
  • Yang, X., & Zhang, X. (2010). Regulation of somatic embryogenesis in higher plants. Critical Reviews Plant Sciences, 29, 36–57.
  • Yang, X., Zhang, X., Yuan, D., Jin, F., Zhang, Y., & Xu, J. (2012). Transcript profiling reveals complex auxin signalling pathway and transcription regulation involved in dedifferentiation and redifferentiation during somatic embryogenesis in cotton. BMC Plant Biology, 12, 110.
  • Young, M.D., Wakefield, M.J., Smyth, G.K., & Oshlack, A. (2010). Gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biology, 11, R14.
  • Yusnita, & Hapsoro, D. W. I. (2011). In Vitro Callus induction and embryogenesis of oil Palm (Elaeis guineensis Jacq.) from leaf explants. HAYATI Journal of Biosciences, 18, 61–65.
  • Zhang, J., Xue, B., Gai, M., Song, S., Jia, N., & Sun, H. (2017). Small RNA and transcriptome sequencing reveal a potential miRNA-mediated interaction network that functions during somatic embryogenesis in Lilium pumilum DC. Fisch. Frontiers in Plant Science, 8, 566.
  • Zhang, X.L., Jiang, L., Xin, Q., Liu, Y., Tan, J.X., & Chen, Z. Z. (2015). Structural basis and functions of abscisic acid receptors PYLs. Frontiers in Plant Science, 6, 88.
  • Zhao, J., Wang, B., Wang, X., Zhang, Y., Dong, M., & Zhang, J. (2015). iTRAQ-based comparative proteomic analysis of embryogenic and non-embryogenic tissues of Prince Rupprecht’s larch (Larix principis-rupprechtii Mayr). Plant Cellular Tiss Organic Cultural, 120, 655–669.
  • Zheng, Y., Ren, N., Wang, H., Stromberg, A.J., & Perry, S. E. (2009). Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-Like15. The Plant Cell, 21, 2563–2577.
  • Zhou, Y., Zhang, J., Chen, M., & Gu, J. (2013). Development of plant regeneration system via somatic embryogenesis from roots of Lilium hybrid cultivars. Propag Ornam Plants, 13, 130–137.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.