368
Views
11
CrossRef citations to date
0
Altmetric
Articles

Transcriptome analysis of self- and cross-pollinated pistils revealing candidate unigenes of self-incompatibility in Camellia oleifera

, , , , , , , , & ORCID Icon show all
Pages 19-31 | Accepted 31 May 2019, Published online: 25 Jun 2019

References

  • Allen, A.M., & Hiscock, S.J. (2008). Evolution and phylogeny of self-incompatibility systems in angiosperms (pp. 73–101). Berlin, Heidelberg: Springer.
  • Allen, A.M., & Hiscock., S. (2008). Evolution and phylogeny of self-incompatibility systems in angiosperms. In V.E. Franklin-Tong (Ed.), Self-incompatibility in flowering plants-evolution, diversity and mechanisms (Vol. 18, pp. 73–101). Berlin: Springer.
  • Baker, R.P., Hasenstein, K.H., & Zavada, M.S. (1997). Hormonal changes after compatible and incompatible pollination in Theobroma cacao L. Hortscience A Publication of the American Society for Horticultural Science, 32, 1231–1234.
  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, 57, 12.
  • Birkenbihl, R.P., Liu, S., & Somssich, I.E. (2017). Transcriptional events defining plant immune responses. Current Opinion in Plant Biology, 38, 1–9. doi:10.1016/j.pbi.2017.04.004
  • Bolwell, G.P., Butt, V.S., Davies, D.R., & Zimmerlin, A. (1996). The origin of the oxidative burst in plants. Biochemical Society Transactions, 23, 517–532.
  • Bowser, R., Müller, H., Govindan, B., & Novick, P. (1992). Sec8p and Sec15p are components of a plasma membrane-associated 19.5S particle that may function downstream of Sec4p to control exocytosis. Journal of Cell Biology, 118, 1041–1056. doi:10.1083/jcb.118.5.1041
  • Bowser, R., & Novick, P. (1991). Sec15 protein, an essential component of the exocytic apparatus, is associated with the plasma membrane and with a soluble 19.5S particle. Journal of Cell Biology, 112, 1117–1131. doi:10.1083/jcb.112.6.1117
  • Chen, X., Hao, S., Wang, L., Fang, W., Wang, Y., & Li, X. (2012). Late-acting self-incompatibility in tea plant (Camellia sinensis). Biologia, 67, 347–351. doi:10.2478/s11756-012-0018-9
  • Chong, Y.T., Gidda, S.K., Sanford, C., Parkinson, J., Mullen, R.T., & Goring, D.R. (2010). Characterization of the arabidopsis thaliana exocyst complex gene families by phylogenetic, expression profiling, and subcellular localization studies. New Phytologist, 185, 401–419. doi:10.1111/j.1469-8137.2009.03070.x
  • Cope, F.W. (1962). The mechanism of pollen incompatibility in Theobroma cacao L. Heredity, 17, 157–182. doi:10.1038/hdy.1962.14
  • Devic, M., Guilleminot, J., Debeaujon, I., Bechtold, N., Bensaude, E., Koornneef, M., … Deiseny, M. (1999). The BANYULS gene encodes a DFR-like protein and is a marker of early seed coat development. Plant Journal for Cell & Molecular Biology, 19, 387. doi:10.1046/j.1365-313X.1999.00529.x
  • Dubos, C., Stracke, R., Grotewold, E., Weisshaar, B., Martin, C., & Lepiniec, L. (2010). MYB transcription factors in Arabidopsis. Trends in Plant Science, 15, 573–581. doi:10.1016/j.tplants.2010.06.005
  • Elias, M., Drdova, E., Ziak, D., Bavlnka, B., Hala, M., Cvrckova, F., … Zarsky, V. (2003). The exocyst complex in plants. Cell Biology International, 27, 199.
  • Elleman, C.J., & Dickinson, H.G. (1999). Commonalities between pollen/stigma and host/pathogen interactions: Calcium accumulation during stigmatic penetration in brassica oleracea pollen tubes. Sexual Plant Reproduction, 12, 194–202. doi:10.1007/s004970050192
  • Emons, A.M.C., & Ketelaar, T. (2010). The plant exocyst. Journal of Integrative Plant Biology, 52, 138–146. doi:10.1111/j.1744-7909.2010.00929.x
  • Escobar-Restrepo, J.-M., Huck, N., Kessler, S., Gagliardini, V., Gheyselinck, J., Yang, W.-C., & Grossniklaus, U. (2007). The FERONIA receptor-like kinase mediates male-female interactions during pollen tube reception. Science, 317, 656–660. doi:10.1126/science.1143562
  • Gao, C., Yuan, D., Yang, Y., Wang, B., Liu, D., & Zou, F. (2015). Pollen tube growth and double fertilization in camellia oleifera. Journal of the American Society for Horticultural Science American Society for Horticultural Science, 140, 12–18. doi:10.21273/JASHS.140.1.12
  • Gibbs, P.E. (2014). Late-acting self-incompatibility–The pariah breeding system in flowering plants. The New Phytologist, 203, 717–734. doi:10.1111/nph.12874
  • Giranton, J.L., Dumas, C., Cock, J.M., & Gaude, T. (2000). The integral membrane S-locus receptor kinase of brassica has serine/threonine kinase activity in a membranous environment and spontaneously forms oligomers in planta. Proceedings of the National Academy of Sciences of the United States of America, 97, 3759–3764. doi:10.1073/pnas.070025097
  • Goldraij, A., Kondo, K., Lee, C.B., Hancock, C.N., Sivaguru, M., Vazquez-Santana, S., … Mcclure, B. (2006). Compartmentalization of S-RNase and HT-B degradation in self-incompatible nicotiana. Nature, 439, 805–810. doi:10.1038/nature04491
  • Guo, W., Roth, D., Walch‐Solimena, C., & Novick, P. (2014). The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. Embo Journal, 18, 1071–1080. doi:10.1093/emboj/18.4.1071
  • Hadjiosif, N., de Graaf, B.H.J., Hadjiosif, N., Perry, R.M., Poulter, N.S., Osman, K., … Franklin-Tong, V.E. (2009). Identification of the pollen self-incompatibility determinant in papaver rhoeas. Nature, 459, 992. doi:10.1038/nature08027
  • Hasenstein, K.H., & Zavada, M.S. (2001). Auxin modification of the incompatibility response in theobroma cacao. Physiologia Plantarum, 112, 113–118.
  • Hiscock, S.J., & Allen, A.M. (2008). Diverse cell signalling pathways regulate pollen-stigma interactions: The search for consensus. New Phytologist, 179, 286–317. doi:10.1111/nph.2008.179.issue-2
  • Huang, S.X., Wu, H.Q., Li, Y.R., Wu, J., Zhang, S.J., Heng, W., & Zhang, S.L. (2008). Competitive interaction between two functional S-haplotypes confer self-compatibility on tetraploid Chinese cherry (Prunus pseudocerasus Lindl. CV. Nanjing Chuisi). Plant Cell Reports, 27, 1075–1085. doi:10.1007/s00299-008-0528-7
  • Ito, M. (2005). Conservation and diversification of three-repeat Myb transcription factors in plants. Journal of Plant Research, 118, 61. doi:10.1007/s10265-005-0192-8
  • Jiang, J., Ma, S., Ye, N., Jiang, M., Cao, J., & Zhang, J. (2017). WRKY transcription factors in plant responses to stresses. Journal of Integrative Plant Biology, 59, 86. doi:10.1111/jipb.12513
  • Jiang, Y., & Deyholos, M.K. (2009). Functional characterization of arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Molecular Biology, 69, 91. doi:10.1007/s11103-008-9408-3
  • Jin, J., Zhang, H., Kong, L., Gao, G., & Luo, J. (2014). PlantTFDB 3.0: A portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Research, 42, 1182–1187. doi:10.1093/nar/gkt1016
  • Kakita, M., Murase, K., Iwano, M., Matsumoto, T., Watanabe, M., Shiba, H., … Takayama, S. (2007). Two distinct forms of M-locus protein kinase localize to the plasma membrane and interact directly with S-locus receptor kinase to transduce self-incompatibility signaling in brassica rapa. The Plant Cell, 19, 3961–3973. doi:10.1105/tpc.106.049999
  • Knox, R.B., & Kenrick, J. (1983). Polyad function in relation to the breeding system of acacia. In D.L. Mulcahy & E. Ottaviano (Eds..), Pollen: Biology and implications for plant breeding (pp. 7). Italy: Elsevier Biomedica.
  • Kumar, V., Nadda, G., Kumar, S., & Yadav, S.K. (2013). Transgenic tobacco overexpressing tea cDNA encoding dihydroflavonol 4-Reductase and anthocyanidin reductase induces early flowering and provides biotic stress tolerance. PloS One, 8, e65535. doi:10.1371/journal.pone.0065535
  • Kunz, C., Chang, A., Faure, J. D, Clarke, A.E., Polya, G.M., & Anderson, M.A. (1996). Phosphorylation of style S-RNases by Ca2+-dependent protein kinases from pollen tubes. Sexual Plant Reproduction, 9, 25–34. doi:10.1007/BF00230363
  • LaDoux, T., & Friar., E.A. (2006). Late-acting self-incompatibility in ipomopsis tenuifolia (Gray) V. Grant (Polemoniaceae).pdf. International Journal of Plant Sciences, 167, 9. doi:10.1086/500985
  • Lee, C.P., & Yen, G.C. (2006). Antioxidant activity and bioactive compounds of tea seed (Camellia oleifera Abel.) oil. Journal of Agricultural & Food Chemistry, 54, 779. doi:10.1021/jf052325a
  • Li, M., & Xue, Y. (2007). Genome-wide gene expression profiling reveals conserved and novel molecular functions of the stigma in rice. Plant Physiology, 144, 1797–1812. doi:10.1104/pp.107.101600
  • Li, S., Fu, Q., Chen, L., Huang, W., & Yu, D. (2011). Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta, 233, 1237–1252. doi:10.1007/s00425-011-1375-2
  • Liao, T., Yuan, D.Y., Zou, F., Gao, C., Yang, Y., Zhang, L., & Tan, X.F. (2014). Self-sterility in Camellia oleifera may be due to the prezygotic late-acting self-incompatibility. PloS One, 9, e99639. doi:10.1371/journal.pone.0099639
  • Lindner, H., Kessler, S.A., Müller, L.M., Shimosato-Asano, H., Boisson-Dernier, A., & Grossniklaus, U. (2015). TURAN and EVAN mediate pollen tube reception in arabidopsis synergids through protein glycosylation. PLoS Biology, 13, e1002139. doi:10.1371/journal.pbio.1002139
  • Lipow, S.R., & Wyatt, R. (2000). Single gene control of postzygotic self-incompatibility in poke milkweed, asclepias exaltata L. Genetics, 154, 893–907.
  • Livak, K.J., & Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 25, 402–408. doi:10.1006/meth.2001.1262
  • Matern, H.T., Yeaman, C., Nelson, W.J., & Scheller, R.H. (2001). The Sec6/8 complex in mammalian cells: Characterization of mammalian sec3, subunit interactions, and expression of subunits in polarized cells. Proceedings of the National Academy of Sciences of the United States of America, 98, 9648–9653. doi:10.1073/pnas.171317898
  • Mcclure, B. (2006). New views of S-RNase-based self-incompatibility. Current Opinion in Plant Biology, 9, 639–646. doi:10.1016/j.pbi.2006.09.004
  • Mcinnis, S.M., Costa, L.M., Gutiérrezmarcos, J.F., Henderson, C.A., & Hiscock, S.J. (2005). Isolation and characterization of a polymorphic stigma-specific class III peroxidase gene from senecio squalidus L. (Asteraceae). Plant Molecular Biology, 57, 659–677. doi:10.1007/s11103-005-1426-9
  • Meng, D., Gu, Z., Li, W., Wang, A., Yuan, H., Yang, Q., & Li, T. (2014). Apple MdABCF assists in the transportation of S -Rnase into pollen tubes. The Plant Journal, 78, 13.
  • Mo, Y., Nagel, C., & Taylor, L.P. (1992). Biochemical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen. Proceedings of the National Academy of Sciences of the United States of America, 89, 7213–7217. doi:10.1073/pnas.89.15.7213
  • Morse, A.M., Whetten, R.W., Dubos, C., & Campbell, M.M. (2009). Post-translational modification of an R2R3-MYB transcription factor by a MAP kinase during xylem development. New Phytologist, 183, 1001–1013. doi:10.1111/j.1469-8137.2009.02900.x
  • Mortazavi, A., Schaeffer, L., Wold, B., Schaeffer, L., & Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 5, 8. doi:10.1038/nmeth.1226
  • Murase, K., Shiba, H., Iwano, M., Che, F.S., Watanabe, M., Isogai, A., & Takayama, S. (2004). A membrane-anchored protein kinase involved in brassica self-incompatibility signaling. Science, 303, 1516–1519. doi:10.1126/science.1093586
  • Murfett, J., Atherton., T., Mou, B., Gassert, C.S., & McClure, B.A. (1994). S-RNase expressed in transgenic nicotiana causes S-allele-specific pollen rejection.pdf. Nature, 367, 4. doi:10.1038/367563a0
  • Murphy, A., Peer, W.A., & Taiz, L. (2000). Regulation of auxin transport by aminopeptidases and endogenous flavonoids. Planta, 211, 315–324. doi:10.1007/s004250000300
  • Nelson, D.R., Kamataki, T., Waxman, D.J., Guengerich, F.P., Estabrook, R.W., Feyereisen, R., … Gotoh, O. (1993). The P450 superfamily: Update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. Dna & Cell Biology, 12, 1–51. doi:10.1089/dna.1993.12.1
  • Novick, P., Field, C., & Schekman, R. (1980). Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell, 21, 205–215.
  • Peer, W.A., & Murphy, A.S. (2007). Flavonoids and auxin transport: Modulators or regulators? Trends in Plant Science, 12, 556. doi:10.1016/j.tplants.2007.10.003
  • Punwani, J.A., Rabiger, D.S., Lloyd, A., & Drews, G.N. (2008). The MYB98 subcircuit of the synergid gene regulatory network includes genes directly and indirectly regulated by MYB98. Plant Journal, 55, 406–414. doi:10.1111/j.1365-313X.2008.03514.x
  • Riechmann, J.L., & Ratcliffe, O.J. (2000). A genomic perspective on plant transcription factors. Current Opinion in Plant Biology, 3, 423–434.
  • Sage, T.L., Bertin, R.I., Williams, E.G., Williams, E.G., Clarke, A.E., & Knox, R.B. (1994). Ovarian and other late-acting self-incompatibility systems (pp. p 116–140). Netherlands: Springer.
  • Sage, T.L., Price, M.V., & Waser, N.M. (2006). Self﹕terility in Ipomopsis aggregata (Polemoniaceae) is due to prezygotic ovule degeneration. American Journal of Botany, 93, 254–262. doi:10.3732/ajb.93.2.254
  • Sage, T.L., & Williams, E.G. (1995). Structure, ultrastructure, and histochemistry of the pollen tube pathway in the milkweed asclepias exaltata L. Sexual Plant Reproduction, 8, 257–265. doi:10.1007/BF00229381
  • Samuel, M.A., Chong, Y.T., Haasen, K.E., Aldeabrydges, M.G., Stone, S.L., & Goring, D.R. (2009). Cellular pathways regulating responses to compatible and self-incompatible pollen in brassica and arabidopsis stigmas intersect at Exo70A1, a putative component of the exocyst complex. The Plant Cell, 21, 2655–2671. doi:10.1105/tpc.109.069740
  • Sánchezfernández, R., Davies, T.G., Coleman, J.O., & Rea, P.A. (2001). The Arabidopsis thaliana ABC protein superfamily, a complete inventory. Journal of Biological Chemistry, 276, 30231–30244. doi:10.1074/jbc.M103104200
  • SC., H. (2007). Exploring the role of protein phosphorylation in plants_ from signalling to metabolism.pdf. Biochemical Society Transactions, 35, 5.
  • Schopfer, C.R., Nasrallah, M.E., & Nasrallah, J.B. (1999). The male determinant of self-incompatibility in brassica. Science, 286, 1697–1700.
  • Schuler, M.A., & Werckreichhart, D. (2003). Functional genomics of P450s. Annual Review of Plant Biology, 54, 629–667. doi:10.1146/annurev.arplant.54.031902.134840
  • Seavey, S.R., & Bawa, K.S. (1986). Late-acting self-incompatibility in angiosperms. Botanical Review, 52, 195–219. doi:10.1007/BF02861001
  • Shi, D., Tang, C., Wang, R., Gu, C., Wu, X., Hu, S., … Zhang, S. (2017). Transcriptome and phytohormone analysis reveals a comprehensive phytohormone and pathogen defence response in pear self-/cross-pollination. Plant Cell Reports, 36, 1785–1799. doi:10.1007/s00299-017-2194-0
  • Sijacic, P., Wang, X., Skirpan, A.L., Wang, Y., Dowd, P.E., McCubbin, A.G., … Kao, T.H. (2004). Identification of the pollen determinant of S-RNase-mediated self-incompatibility. Nature, 429, 302–305. doi:10.1038/nature02523
  • Stein, J.C., Howlett, B., Boyes, D.C., Nasrallah, M.E., & Nasrallah, J.B. (1991). Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of brassica oleracea. Proceedings of the National Academy of Sciences of the United States of America, 88, 8816–8820. doi:10.1073/pnas.88.19.8816
  • Swanson, R., Clark, T., & Preuss, D. (2005). Expression profiling of <Emphasis type=“Italic”>Arabidopsis stigma tissue identifies stigma-specific genes. Sexual Plant Reproduction, 18, 163–171.
  • Takasaki, T., Hatakeyama, K., Suzuki, G., Watanabe, M., Isogai, A., & Hinata, K. (2000). The S receptor kinase determines self-incompatibility in brassica stigma. Nature, 403, 913. doi:10.1038/35002628
  • Takayama, S., & Isogai, A. (2005). SELF-INCOMPATIBILITY IN PLANTS. Annual Review of Plant Biology, 56, 467–489. doi:10.1146/annurev.arplant.56.032604.144249
  • Tangmitcharoen, S., & Owens, J.N. (1997). Pollen viability and pollen-tube growth following controlled pollination and their relation to low fruit production in teak (Tectona grandisLinn. f.). Annals of Botany, 80, 401–410. doi:10.1006/anbo.1996.0440
  • Taylor, L.P., & Hepler, P.K. (1997). Pollen germination and tube growth. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 461–491. doi:10.1146/annurev.arplant.48.1.461
  • Terbush, D.R., & Novick, P. (1995). Sec6, Sec8, and Sec15 are components of a multisubunit complex which localizes to small bud tips in saccharomyces cerevisiae. Journal of Cell Biology, 130, 299–312. doi:10.1083/jcb.130.2.299
  • Thomas, S.G., & Franklin-Tong, V.E. (2004). Self-incompatibility triggers programmed cell death in papaver pollen. Nature, 429, 305. doi:10.1038/nature02540
  • Touraev, A., Stöger, E., Tunen, A.J.V., Vicente, O., & Heberle-Bors, E. (1992). Flavonols stimulate development, germination, and tube growth of tobacco pollen. Plant Physiology, 100, 902–907. doi:10.1104/pp.100.2.902
  • Tung, C.W., Dwyer, K.G., Nasrallah, M.E., & Nasrallah, J.B. (2005). Genome-wide identification of genes expressed in arabidopsis pistils specifically along the path of pollen tube growth. Plant Physiology, 138, 977–989. doi:10.1104/pp.105.060558
  • Valtueña, F.J., Espinosa, F., & Ortega‐Olivencia, A. (2010). Self‐sterility in two cytisus species (Leguminosae, Papilionoideae) due to early‐acting inbreeding depression. American Journal of Botany, 97, 123–135. doi:10.3732/ajb.0800332
  • Watanabe, M., Suzuki, G., & Takayama, S. (2008). Milestones identifying self-incompatibility genes in brassica species: From old stories to new findings (pp. 151–172). Springer Berlin Heidelberg.
  • Wheeler, M.J., de Graaf, B.H., Hadjiosif, N., Perry, R.M., Poulter, N.S., Osman, K., … Franklin-Tong, V.E. (2009). Identification of the pollen self-incompatibility determinant in papaver rhoeas. Nature, 459, 992–995. doi:10.1038/nature08027
  • Yu, Y., Ren, S., & Tan, K. (1999). Study on climatic regionalization and layer and belt distribution of oiltea camellia quality in China. Journal of Natural Resources, 14, 123–127.
  • Zhang, C.C., Wang, L.Y., Wei, K., Wu, L.Y., Li, H.L., Zhang, F., … Ni, D.J. (2016). Transcriptome analysis reveals self-incompatibility in the tea plant (Camellia sinensis) might be under gametophytic control. BMC Genomics, 17, 359. doi:10.1186/s12864-016-3328-4
  • Zhang, S., Ding, F., He, X., Luo, C., Huang, G., & Hu, Y. (2015). Characterization of the ‘Xiangshui’ lemon transcriptome by de novo assembly to discover genes associated with self-incompatibility. Molecular Genetics & Genomics, 290, 365–375. doi:10.1007/s00438-014-0920-7
  • Zhao, P., Zhang, L., & Zhao, L. (2015). Dissection of the style’s response to pollination using transcriptome profiling in self-compatible (Solanum pimpinellifolium) and self-incompatible (Solanum chilense) tomato species. BMC Plant Biology, 15, 119. doi:10.1186/s12870-015-0533-2
  • Zheng, Z., Qamar, S.A., Chen, Z., & Mengiste, T. (2006). Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant Journal, 48, 592–605. doi:10.1111/j.1365-313X.2006.02901.x
  • Zhou, Q., Jia, J., Huang, X., Yan, X., Cheng, L., Chen, S., … Liu, G. (2014). The large-scale investigation of gene expression in Leymus chinensis stigmas provides a valuable resource for understanding the mechanisms of poaceae self-incompatibility. BMC Genomics, 15, 399. doi:10.1186/1471-2164-15-399
  • Zhou, Q., & Zheng, Y. (2015). ComparativeDe novotranscriptome analysis of fertilized ovules inxanthoceras sorbifoliumuncovered a pool of genes expressed specifically or preferentially in the selfed ovule that are potentially involved in late-acting self-incompatibility. PloS One, 10, e0140507. doi:10.1371/journal.pone.0140507

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.