390
Views
11
CrossRef citations to date
0
Altmetric
Articles

A R2R3-MYB transcription factor VvMYBF1 from grapevine (Vitis vinifera L.) regulates flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis

, , , &
Pages 147-161 | Accepted 29 Aug 2019, Published online: 29 Sep 2019

References

  • Alia, M.P., & Matysik, J. (2001). Effect of proline on the production of singlet oxygen. Amino Acids, 21, 195–200. doi:10.1007/s007260170026
  • Allan, A.C., Hellens, R.P., & Laing, W.A. (2008). MYB transcription factors that colour our fruit. Trends in Plant Science, 13, 99–102. doi:10.1016/j.tplants.2007.11.012
  • Balasundram, N., Sundram, K., & Samman, S. (2006). Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry, 99, 191–203. doi:10.1016/j.foodchem.2005.07.042
  • Ban, Y., Honda, C., Hatsuyama, Y., Igarashi, M., Bessho, H., & Moriguchi, T. (2007). Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant and Cell Physiology, 48, 958–970. doi:10.1093/pcp/pcm066
  • Banerjee, A., & Roychoudhury, A. (2016). Group II late embryogenesis abundant (LEA) proteins: Structural and functional aspects in plant abiotic stress. Plant Growth Regulation, 79, 1–17. doi:10.1007/s10725-015-0113-3
  • Bao, A.K., Wang, S.M., Wu, G.Q., Xi, J.J., Zhang, J.L., & Wang, C.M. (2009). Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Science, 176, 232–240. doi:10.1016/j.plantsci.2008.10.009
  • Ben-Amor, M., Flores, B., Latche, A., Bouzayen, M., Pech, J.C., & Romojaro, F. (1999). Inhibition of ethylene biosynthesis by antisense ACC oxidase RNA prevents chilling injury in Charentais cantaloupe melons. Plant, Cell & Environment, 22, 1579–1586. doi:10.1046/j.1365-3040.1999.00509.x
  • Bohnert, H.J., Nelson, D.E., & Jensen, R.G. (1995). Adaptations to environmental stresses. The Plant Cell, 7, 1099–1111. doi:10.2307/3870060
  • Buer, C.S., Imin, N., & Djordjevic, M.A. (2010). Flavonoids: New roles for old molecules. Journal of Integrative Plant Biology, 52, 98–111. doi:10.1111/jipb.2010.52.issue-1
  • Butelli, E., Titta, L., Giorgio, M., Mock, H.P., Matros, A., Peterek, S., … Martin, C. (2008). Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nature Biotechnology, 26, 1301–1308. doi:10.1038/nbt.1506
  • Czemmel, S.L., Stracke, R., Weisshaar, B., Cordon, N., Harris, N.N., Walker, A.R., … Bogs, J. (2009). The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synthesis in developing grape berries. Plant Physiology, 151, 1513–1530. doi:10.1104/pp.109.142059
  • Dalal, M., Tayal, D., Chinnusamy, V., & Bansal, K.C. (2009). Abiotic stress and ABA-inducible group 4 LEA from Brassica napus plays a key role in salt and drought tolerance. Journal of Biotechnology, 139, 137–145. doi:10.1016/j.jbiotec.2008.09.014
  • Dixon, R.A., Liu, C., & Jun, J.H. (2013). Metabolic engineering of anthocyanins and condensed tannins in plants. Current Opinion in Biotechnology, 24, 329–335. doi:10.1016/j.copbio.2012.07.004
  • Feller, A., Machemer, K., Braun, E.L., & Grotewold, E. (2011). Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. The Plant Journal, 66, 94–116. doi:10.1111/tpj.2011.66.issue-1
  • Ganguly, M., Datta, K., Roychoudhury, A., Gayen, D., Sengupta, D.N., & Datta, S.K. (2012). Overexpression of Rab16A gene in indica rice variety for generating enhanced salt tolerance. Plant Signaling & Behavior, 7, 502–509. doi:10.4161/psb.19646
  • Gao, J.J., Zhang, Z., Peng, R.H., Xiong, A.S., Xu, J., Zhu, B., & Yao, Q.H. (2011a). Forced expression of Mdmyb10, a myb transcription factor gene from apple, enhances tolerance to osmotic stress in transgenic Arabidopsis. Molecular Biology Reports, 38, 205–211. doi:10.1007/s11033-010-0096-0
  • Gao, S., Yuan, L., Zhai, H., Liu, C.L., He, S.Z., & Liu, Q.C. (2011c). Transgenic sweetpotato plants expressing an LOS5 gene are tolerant to salt stress. Plant Cell, Tissue and Organ Culture (PCTOC), 107, 205–213. doi:10.1007/s11240-011-9971-1
  • Gao, W.D., Bai, S., Li, Q.M., Gao, C.Q., Liu, G.F., Li, G.D., & Tan, F.L. (2013). Overexpression of TaLEA gene from Tamarix androssowii improves salt and drought tolerance in transgenic poplar (Populus simonii×P. nigra). PloS One, 8, e67462. doi:10.1371/journal.pone.0067462
  • Grotewold, E. (2006). The genetics and biochemistry of floral pigments. Annual Review of Plant Biology, 57, 761–780. doi:10.1146/annurev.arplant.57.032905.105248
  • Guo, J., Zhou, W., Lu, Z., Li, H., Li, H., & Gao, F. (2015). Isolation and functional analysis of chalcone isomerase gene from purple-fleshed sweetpotato. Plant Molecular Biology Reporter / ISPMB, 33, 1451–1463. doi:10.1007/s11105-014-0842-x
  • Hannum, S.M. (2004). Potential impact of strawberries on human health: A review of the science. Critical Reviews in Food Science and Nutrition, 44, 1–17. doi:10.1080/10408690490263756
  • Hayzer, D.J., & Leisinger, T. (1980). The gene-enzyme relationships of proline biosynthesis in Escherichia Coli. Journal of General Microbiology, 118, 287–293.
  • Hichri, I., Barrieu, F., Bogs, J., Kappel, C., Delrot, S., & Lauvergeat, V. (2011). Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. Journal of Experimental Botany, 62, 2465–2483. doi:10.1093/jxb/erq442
  • Hou, D.-X., Fujii, M., Terahara, N., & Yoshimoto, M. (2004). Molecular mechanisms behind the chemopreventive effects of anthocyanidins. Journal of Biomedicine and Biotechnology, 2004, 321–325. doi:10.1155/S1110724304403040
  • Koca, H., Ozdemir, F., & Turkan, I. (2006). Effect of salt stress on lipid peroxidation and superoxide dismutase and peroxidase activities of Lycopersicon esculentum and L. pennellii. Biologia Plantarum, 50, 745–748. doi:10.1007/s10535-006-0121-2
  • Krasensky, J., & Jonak, C. (2012). Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany, 63, 1593–1608. doi:10.1093/jxb/err460
  • Lännenpää, M. (2014). Heterologous expression of AtMYB12 in kale (Brassica oleracea var. acephala) leads to high flavonol accumulation. Plant Cell Reports, 33, 1377–1388. doi:10.1007/s00299-014-1623-6
  • Lepiniec, L., Debeaujon, I., Routaboul, J.M., Baudry, A., Pourcel, L., Nesi, N., & Caboche, M. (2006). Genetics and biochemistry of seed flavonoids. Annual Review of Plant Biology, 57, 405–430. doi:10.1146/annurev.arplant.57.032905.105252
  • Li, H., Flachowsky, H., Fischer, T.C., Hanke, M.V., Forkmann, G., Treutter, D., … Zankowski, I. (2007). Maize Lc transcription factor enhances biosynthesis of anthocyanins, distinct proanthocyanidins and phenylpropanoids in apple (Malus Domestica Borkh.). Planta, 226, 1243–1254. doi:10.1007/s00425-007-0573-4
  • Li, X., Ma, H., Huang, H., Li, D., & Yao, S. (2013). Natural anthocyanins from phytoresources and their chemical researches. Natural Product Research, 27, 456–469. doi:10.1080/14786419.2012.706299
  • Lister, C.E., & Lancaster, J. (1996). Developmental changes in enzymes of flavonoid biosynthesis in the skins of red and green apple cultivars. Journal of the Science of Food and Agriculture, 71, 313–320. doi:10.1002/(ISSN)1097-0010
  • Liu, D.G., He, S.Z., Song, X.J., Zhai, H., Liu, N., Zhang, D.D., … Liu, Q.C. (2015a). IbSIMT1, a novel salt-induced methyltransferase gene from Ipomoea batatas, is involved in salt tolerance. Plant Cell, Tissue and Organ Culture (PCTOC), 120, 701–715. doi:10.1007/s11240-014-0638-6
  • Liu, D.G., He, S.Z., Zhai, H., Wang, L.J., Zhao, Y., Wang, B., … Liu, Q.C. (2014). Overexpression of IbP5CR enhances salt tolerance in transgenic sweetpotato. Plant Cell, Tissue and Organ Culture (PCTOC), 117, 1–16. doi:10.1007/s11240-013-0415-y
  • Liu, Y., Ji, X., Nie, X., Qu, M., Zheng, L., Tan, Z., … Wang, Y. (2015b). Arabidopsis AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs. The New Phytologist, 207, 692–709. doi:10.1111/nph.13387
  • Lou, X.M., Yao, Q.H., Zhang, Z., Peng, R.H., Xiong, A.S., & Wang, K.K. (2007). Expression of human hepatitis B virus large surface antigen gene in transgenic tomato. Clinical and Vaccine Immunology, 14, 464–469. doi:10.1128/CVI.00321-06
  • Luo, J., Butelli, E., Hill, L., Parr, A., Niggeweg, R., Butelli, E., … Martin, C. (2008). AtMYB12 regulates caffeoyl quinic acid and flavonol synthesis in tomato: Expression in fruit results in very high levels of both types of polyphenol. The Plant Journal : for Cell and Molecular Biology, 56, 316–326. doi:10.1111/j.1365-313X.2008.03597.x
  • Luriea, S., Fallika, E., Handrosa, A., & Shapirab, R. (1997). The possible involvement of peroxidase in resistance to Botrytis cinerea in heat treated tomato fruit. Physiological and Molecular Plant Pathology, 50, 141–149. doi:10.1006/pmpp.1996.0074
  • Mehrtens, F., Kranz, H., Bednarek, P., & Weisshaar, B. (2005). The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiology, 138, 1083–1096. doi:10.1104/pp.104.058032
  • Misra, P., Pandey, A., Tiwari, M., Chandrashekar, K., Sidhu, O.P., Asif, M.H., … Tuli, R. (2010). Modulation of transcriptome and metabolome of tobacco by Arabidopsis transcription factor, AtMYB12, leads to insect resistance. Plant Physiology, 152, 2258–2268. doi:10.1104/pp.109.150979
  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681. doi:10.1146/annurev.arplant.59.032607.092911
  • Muñoz-Mayor, A., Pineda, B., Garcia-Abellán, J.O., Antón, T., Garcia-sogo, B., Sanchez-Bel, P., … Bolarin, M.C. (2012). Overexpression of dehydrin tas14 gene improves the osmotic stress imposed by drought and salinity in tomato. Journal of Plant Physiology, 169, 459–468. doi:10.1016/j.jplph.2011.11.018
  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497. doi:10.1111/ppl.1962.15.issue-3
  • Murray, J.R., & Havcett, W.P. (1991). Dihydroflavonol reductase activity in relation to differential anthocyanin accumulation in juvenile and mature phase Hedera helix L. Plant Physiology, 97, 343–351. doi:10.1104/pp.97.1.343
  • Park, S.C., Kim, Y.H., Jeong, J.C., Kim, C.Y., Lee, H.S., Bang, J.W., & Kwak, S.S. (2011). Sweetpotato late embryogenesis abundant 14 (IbLEA14) gene influences lignification and increases osmotic- and salt stress-tolerance of transgenic calli. Planta, 233, 621–634. doi:10.1007/s00425-010-1326-3
  • Qiu, J., Gao, F., Shen, G., Li, C., Han, X., Zhao, Q., … Pang, Y. (2013). Metabolic engineering of the phenylpropanoid pathway enhances the antioxidant capacity of Saussurea involucrata. PloS One, 8, e70665. doi:10.1371/journal.pone.0070665
  • Qiu, J., Sun, S., Luo, S., Zhang, J., Xiao, X., Zhang, L., … Liu, S. (2014). Arabidopsis AtPAP1 transcription factor induces anthocyanin production in transgenic Taraxacum brevicorniculatum. Plant Cell Reports, 33, 669–680. doi:10.1007/s00299-014-1585-8
  • Routaboul, J.M., Kerhoas, L., Debeaujon, I., Pourcel, L., Caboche, M., Einhorn, J., & Lepiniec, L. (2006). Flavonoid diversity and biosynthesis in seed of Arabidopsis thaliana. Planta, 224, 96–107. doi:10.1007/s00425-005-0197-5
  • Schmittgen, T.D., & Livak, K.J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3, 1101–1108. doi:10.1038/nprot.2008.73
  • Smirnoff, N., & Cumbes, Q.J. (1989). Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry, 28, 1057–1060.
  • Stracke, R., Favory, J.J., Gruber, H., Bartelniewoehner, L., Bartels, S., Binkert, M., … Ulm, R. (2010). The Arabidopsis bZIP transcription factor HY5 regulates expression of the PFG1/MYB12 gene in response to light and ultraviolet-B radiation. Plant, Cell & Environment, 33, 88–103.
  • Szabados, L., & Savouré, A. (2010). Proline: A multifunctional amino acid. Trends in Plant Science, 15, 89–97. doi:10.1016/j.tplants.2009.11.009
  • Tattini, M., Galardi, C., Pinelli, P., Massai, R., Remorini, D., & Agati, G. (2004). Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. The New Phytologist, 163, 547–561. doi:10.1111/nph.2004.163.issue-3
  • Wang, F.B., Kong, W.L., Wong, G., Fu, L.F., Peng, R.H., Li, Z.J., & Yao, Q.H. (2016a). AtMYB12 regulates flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis thaliana. Molecular Genetics and Genomics : MGG, 291, 1545–1559. doi:10.1007/s00438-016-1203-2
  • Wang, F.B., Tong, W.J., Hong, Z., Kong, W.L., Peng, R.H., Liu, Q.C., & Yao, Q.H. (2016b). A novel Cys2/His2 zinc finger protein gene from sweetpotato, IbZFP1, is involved in salt and drought tolerance in transgenic Arabidopsis. Planta, 243, 783–797. doi:10.1007/s00425-015-2443-9
  • Wang, F.B., Zhu, H., Chen, D.H., Li, Z.J., Peng, R.H., & Yao, Q.H. (2016c). A grape bHLH transcription factor gene, VvbHLH1, increases the accumulation of flavonoids and enhances salt and drought tolerance in transgenic Arabidopsis thaliana. Plant Cell, Tissue and Organ Culture (PCTOC), 125, 387–398. doi:10.1007/s11240-016-0953-1
  • Wang, F.B., Zhu, H., Kong, W.L., Peng, R.H., Liu, Q.C., & Yao, Q.H. (2016d). The Antirrhinum AmDEL gene enhances flavonoids accumulation and salt and drought tolerance in transgenic Arabidopsis. Planta, 244, 59–73. doi:10.1007/s00425-016-2489-3
  • Wang, H., Fan, W., Li, H., Yang, J., Huang, J., & Zhang, P. (2013). Functional characterization of dihydroflavonol-4-reductase in anthocyanin biosynthesis of purple sweetpotato underlies the direct evidence of anthocyanins function against abiotic stresses. PLoS One, 8, e78484. doi:10.1371/journal.pone.0078484
  • Wong, C.C., Li, H.B., Cheng, K.W., & Chen, F. (2006). A systematic survey of antioxidant activity of 30 Chinese medicinal plants using the ferric reducing antioxidant power assay. Food Chemistry, 97, 705–711. doi:10.1016/j.foodchem.2005.05.049
  • Xie, D.Y., Sharma, S.B., Wright, E., Wang, Z.Y., & Dixon, R.A. (2006). Metabolic engineering of proanthocyanidins through co-expression of anthocyanidin reductase and the PAP1 MYB transcription factor. The Plant Journal, 45, 895–907. doi:10.1111/tpj.2006.45.issue-6
  • Xie, X.B., Li, S., Zhang, R.F., Zhao, J., Chen, Y.C., Zhao, Q., … Hao, Y.J. (2012). The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples. Plant, Cell & Environment, 35, 1884–1897. doi:10.1111/j.1365-3040.2012.02523.x
  • Xiong, H., Li, J., Liu, P., Duan, J., Zhao, Y., Guo, X., … Li, Z. (2014). Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PloS One, 9, e92913. doi:10.1371/journal.pone.0092913
  • Yamada, M., Morishita, H., Urano, K., Shiozaki, N., Yamaguchi-Shinozaki, K., Shinozaki, K., & Yoshiba, Y. (2005). Effects of free proline accumulation in petunias under drought stress. Journal of Experimental Botany, 56, 1975–1981. doi:10.1093/jxb/eri195
  • Yang, S.J., Vanderbeld, B., Wan, J.X., & Huang, Y.F. (2010). Narrowing down the targets: Towards successful genetic engineering of drought-tolerant crops. Molecular Plant, 3, 469–490. doi:10.1093/mp/ssq016
  • Zhai, H., Wang, F.B., Si, Z.Z., Huo, J.X., Xing, L., An, Y.Y., … Liu, Q.C. (2015). A myo-inositol-1-phosphate synthase gene, IbMIPS1, enhances salt and drought tolerance and stem nematode resistance in transgenic sweetpotato. Plant Biotechnology Journal, 14, 592–602. doi:10.1111/pbi.12402
  • Zhang, H., Han, B., Wang, T., Chen, S., Li, H., Zhang, Y., & Dai, S. (2012). Mechanisms of plant salt response: Insights from proteomics. Journal of Proteome Research, 11, 49–67. doi:10.1021/pr200861w
  • Zhang, X., Henriques, R., & Lin, S.S. (2006). Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nature Protocols, 1, 641–646. doi:10.1038/nprot.2006.97
  • Zhao, P., Liu, F., Ma, M., Gong, J., Wang, Q., Jia, P., … Liu, H. (2011). Overexpression of AtLEA3-3 confers resistance to cold stress in Escherichia coli and provides enhanced osmotic stress tolerance and ABA sensitivity in Arabidopsis thaliana. Molecular Biology, 45, 851–862. doi:10.1134/S0026893311050165
  • Zhao, Q., Zhang, H., Wang, T., Chen, S.X., & Dai, S.J. (2013). Proteomics-based investigation of salt-responsive mechanisms in plant roots. Journal of Proteomics, 82, 230–253. doi:10.1016/j.jprot.2013.01.024
  • Zhu, J.K. (2002). Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 53, 247–273. doi:10.1146/annurev.arplant.53.091401.143329
  • Zhu, J.-K. (2001). Plant salt tolerance. Trends in Plant Science, 6, 66–71. doi:10.1016/S1360-1385(00)01838-0
  • Zhu, Q., Xie, X., Lin, H., Sui, S., Shen, R., Yang, Z., … Liu, Y.G. (2015). Isolation and functional characterization of a phenylalanine ammonia-lyase gene (SsPAL1) from coleus (Solenostemon scutellarioides (L.) Codd). Molecules, 20, 16833–16851. doi:10.3390/molecules200916833
  • Zou, J., Liu, C.F., Liu, A., Zou, D., & Chen, X.B. (2012). Overexpression of OsHsp17.0 and OsHsp23.7 enhances drought and salt tolerance in rice. Journal of Plant Physiology, 169, 628–635. doi:10.1016/j.jplph.2011.12.014
  • Zuluaga, D.L., Gonzali, S., Loreti, E., Pucciariello, C., Degl’Innocenti, E.D., Guidi, L., … Perata, P. (2008). Arabidopsis thaliana MYB75/PAP1 transcription factor induces anthocyanin production in transgenic tomato plants. Functional Plant Biology, 35, 606–618. doi:10.1071/FP08021

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.