988
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Targeted mutagenesis of CENTRORADIALIS using CRISPR/Cas9 system through the improvement of genetic transformation efficiency of tetraploid highbush blueberry

, ORCID Icon, , &
Pages 153-161 | Accepted 07 Sep 2020, Published online: 18 Sep 2020

References

  • Altpeter, F., Springer, N.M., Bartley, L.E., Blechl, A.E., Brutnell, T.P., Citovsky, V., … Stewart, C.N. (2016). Advancing crop transformation in the era of genome editing. The Plant Cell, 28, 1510–1520.
  • Belhaj, K., Chaparro-Garcia, A., Kamoun, S., & Nekrasov, V. (2013). Plant genome editing made easy: Targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods, 9, 39. doi:10.1186/1746-4811-9-39
  • Bortesi, L., & Fischer, R. (2015). The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnology Advances, 33, 41–52. doi:10.1016/j.biotechadv.2014.12.006
  • Bradley, D., Ratcliffe, O., Vincent, C., Carpenter, R., & Coen, E. (1997). Inflorescence commitment and architecture in Arabidopsis. Science, 5296, 80–83. doi:10.1126/science.275.5296.80
  • Brevis, P.A., Bassil, N.V., Ballington, J.R., & Hancock, J.F. (2008). Impact of wide hybridization on highbush blueberry breeding. Journal of the American Society for Horticultural Science, 133, 427–437. doi:10.21273/JASHS.133.3.427
  • Charrier, A., Vergne, E., Dousset, N., Richer, A., Petiteau, A., & Chevreau, E. (2019). Efficient targeted mutagenesis in apple and first time edition of pear using the CRISPR-Cas9 system. Frontiers in Plant Science, 10, 40.
  • Doench, J.G., Hartenian, E., Graham, D.B., Tothova, Z., Hegde, M., Smith, I., … Root, D.E. (2014). Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nature Biotechnology, 32, 1262–1267. doi:10.1038/nbt.3026
  • Ehlenfeldt, M.K., & Prior, R.L. (2001). Oxygen radical absorbance capacity (ORAC) and phenolic and anthocyanin concentrations in fruit and leaf tissues of highbush blueberry. Journal of Agricultural and Food Chemistry, 49, 2222–2227. doi:10.1021/jf0013656
  • Ferrão, L.F.V., Benevenuto, J., Oliveira, I.D.B., Cellon, C., Olmstead, J., Kirst, M., … Munoz, P. (2018). Insights into the genetic basis of blueberry fruit-related traits using diploid and polyploid models in a GWAS context. Frontiers in Ecology and Evolution, 6, 107. doi:10.3389/fevo.2018.00107
  • Graham, J., Greig, K., & McNicol, R.J. (1996). Transformation of blueberry without antibiotic selection. Annals of Applied Biology, 128, 557–564. doi:10.1111/j.1744-7348.1996.tb07114.x
  • Huang, N.C., Jane, W.N., Chen, J., & Yu, T.S. (2012). Arabidopsis thaliana CENTRORADIALIS homologue (ATC) acts systemically to inhibit floral initiation in Arabidopsis. The Plant Journal, 72, 175–184. doi:10.1111/j.1365-313X.2012.05076.x
  • Jia, H., & Wang, N. (2014). Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS One, 9, e93806. doi:10.1371/journal.pone.0093806
  • Kotoda, N., Iwanami, H., Takahashi, S., & Abe, K. (2006). Antisense expression of MdTFL1, a TFL1-like gene, reduces the juvenile phase in apple. Journal of the American Society for Horticultural Science, 131, 74–81. doi:10.21273/JASHS.131.1.74
  • Liu, C., Callow, P., Rowland, L.J., Hancock, J.F., & Song, G.Q. (2010). Adventitious shoot regeneration from leaf explants of southern highbush beluberry cultivars. Plant Cell, Tissue and Organ Culture, 103, 137–144. doi:10.1007/s11240-010-9755-z
  • Manickavasagam, M., Ganapathi, A., Anbazhagan, V.R., Sudhakar, B., Selvaraj, N., Vasudevan, A., & Kasthurirengan, S. (2004). Agrobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharum species hybrids) using axillary buds. Plant Cell Reports, 23, 134–143. doi:10.1007/s00299-004-0794-y
  • Matsuda, M., Gao, M., Isuzugawa, K., Takashina, T., & Nishimura, K. (2005). Development of an Agrobacterium-mediated transformation method for pear (Pyrus communis L.) with leaf section and axillary shoot-meristem explants. Plant Cell Reports, 24, 45–51. doi:10.1007/s00299-005-0924-1
  • Matsuda, M., Ikeda, K., Kurosaka, M., Takashina, T., Isuzugawa, K., Endo, T., & Omura, M. (2009). Early flowering phenotype in transgenic pears (Pyrus communis L.) expressing the CiFT gene. Journal of the Japanese Society for Horticultural Science, 78, 410–416. doi:10.2503/jjshs1.78.410
  • McCown, B.H., & Lloyd, G. (1981). Woody plant medium (WPM)-a mineral nutrient formulation for microculture of woody plant-species. Hort Science, 16, 453.
  • Munoz, P.R. (2020). Genome-wide association of volatiles reveals candidate loci for blueberry flavor. New Phytologist, 226, 1725–1737. doi:10.1111/nph.16459
  • Naim, F., Dugdale, B., Kleidon, J., Brinin, A., Shand, K., Waterhouse, P., & Dale, J. (2018). Gene editing the phytoene desaturase alleles of Cavendish banana using CRISPR/Cas9. Transgenic Research, 27, 451–460. doi:10.1007/s11248-018-0083-0
  • Nakajima, I., Ban, Y., Azuma, A., Onoue, N., Moriguchi, T., Yamamoto, T., … Endo, M. (2017). CRISPR/Cas9-mediated targeted mutagenesis in grape. PLoS One, 12, e0177966.
  • Nishitani, C., Hirai, N., Komori, S., Wada, M., Okada, K., Osakabe, K., … Osakabe, Y. (2016). Efficient genome editing in apple using a CRISPR/Cas9 system. Scientific Reports, 6, 1–8. doi:10.1038/srep31481
  • Omori, M., Yamane, H., Li, K.-T., Matsuzaki, R., Ebihara, S., Li, T.-S., & Tao, R. (2020). Expressional analysis of FT and CEN genes in a continuously flowering highbush blueberry ‘Blue Muffin’. Acta Horticuturae, 1280, 197–202. doi:10.17660/ActaHortic.2020.1280.27
  • Osakabe, Y., & Osakabe, K. (2015). Genome editing with engineered nucleases in plants. Plant & Cell Physiology, 56, 389–400. doi:10.1093/pcp/pcu170
  • Osakabe, Y., Watanabe, T., Sugano, S.S., Ueta, R., Ishihara, R., Shinozaki, K., & Osakabe, K. (2016). Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants. Scientific Reports, 26, 26685. doi:10.1038/srep26685
  • Prior, R.L., Cao, G., Martin, A., Sofic, E., McEwen, J., O’Brien, C., … Mainland, M. (1998). Antioxidant capacity is influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. Journal of Agricultural and Food Chemistry, 46, 2686–2693. doi:10.1021/jf980145d
  • Qi, X., Ogden, E.L., Die, J.V., Ehlenfeldt, M.K., Polashock, J.J., Darwish, O., … Rowland, L.J. (2019). Transcriptome analysis identifies genes related to the waxy coating on blueberry fruit in two northern-adapted rabbiteye breeding populations. BMC Plant Biology, 19, 460. doi:10.1186/s12870-019-2073-7
  • Song, G.Q., & Hancock, J.F. (2012). Recent advances in blueberry transformation. International Journal of Fruit Science, 12, 316–332. doi:10.1080/15538362.2011.623083
  • Song, G.Q., Prieto, H., & Orbovic, V. (2019). Agrobacterium-mediated transformation of tree fruit crops: Methods, progress, and challenges. Frontiers in Plant Science, 10, 226. doi:10.3389/fpls.2019.00226
  • Song, G.Q., Roggers, R.A., Sink, K.C., Particka, M., & Zandstra, B. (2007). Production of herbicide-resistant highbush blueberry ‘Legacy’ by Agrobacterium-mediated transformation of the Bar gene. Acta Horticulurae, 738, 397–407. doi:10.17660/ActaHortic.2007.738.48
  • Song, G.Q., & Sink, K.C. (2004). Agrobacterium tumefaciens-mediated transformation of blueberry (Vaccinium corymbosum L.). Plant Cell Reports, 23, 475–484. doi:10.1007/s00299-004-0842-7
  • Song, G.Q., Walworth, A., Zhao, D., Jiang, N., & Hancock, J.F. (2013). The Vaccinium corymbosum FLOWERING LOCUS T-like gene (VcFT): A flowering activator reverses photoperiodic and chilling requirements in blueberry. Plant Cell Reports, 32, 1759–1769. doi:10.1007/s00299-013-1489-z
  • Srinivasan, C., Dardick, C., Callahan, A., & Scorza, R. (2012). Plum (Prunus domestica) trees transformed with poplar FT1 result in altered architecture, dormancy requirement, and continuous flowering. PLoS One, 7, e40715. doi:10.1371/journal.pone.0040715
  • Tetsumura, T., Matsumoto, Y., Sato, M., Honsho, C., Yamashita, K., Komatsu, H., … Kunitake, H. (2008). Evaluation of basal media for micropropagation of four highbush blueberry cultivars. Scientia Horticulturae, 119, 72–74. doi:10.1016/j.scienta.2008.06.028
  • Ueta, R., Abe, C., Watanabe, T., Sugano, S.S., Ishihara, R., Ezura, H., … Osakabe, K. (2017). Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9. Scientific Reports, 7, 507. doi:10.1038/s41598-017-00501-4
  • Varkonyi‐Gasic, E., Wang, T., Voogd, C., Jeon, S., Drummond, R.S., Gleave, A.P., & Allan, A.C. (2019). Mutagenesis of kiwifruit CENTRORADIALIS‐like genes transforms a climbing woody perennial with long juvenility and axillary flowering into a compact plant with rapid terminal flowering. Plant Biotechnology Journal, 17, 869–880. doi:10.1111/pbi.13021
  • Walworth, A.E., Rowland, L.J., Polashock, J.J., Hancock, J.F., & Song, G.Q. (2012). Overexpression of a blueberry-derived CBF gene enhances cold tolerance in a southern highbush blueberry cultivar. Molecular Breeding, 30, 1313–1323. doi:10.1007/s11032-012-9718-7
  • Wang, T., Zhang, H., & Zhu, H. (2019). CRISPR technology is revolutionizing the improvement of tomato and other fruit crops. Horticulture Research, 6, 77. doi:10.1038/s41438-019-0159-x
  • Xiao, A., Cheng, Z., Kong, L., Zhu, Z., Lin, S., Gao, G., & Zhang, B. (2014). CasOT: A genome-wide Cas9/gRNA searching tool. Bioinfomatics, 30, 1180–1182. doi:10.1093/bioinformatics/btt764
  • Zhou, J., Li, D., Wang, G., Wang, F., Kunjal, M., Joldersma, D., & Liu, Z. (2020). Application and future perspective of CRISPR/Cas9 genome editing in fruit crops. Journal of Integrative Plant Biology, 62, 269–286. doi:10.1111/jipb.12793

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.