139
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Efficiency of Funneliformis mosseae and Thiobacillus sp. on the secondary metabolites (essential oil, seed oil and mucilage) of Lallemantia iberica under salinity stress

&
Pages 249-259 | Accepted 05 Oct 2020, Published online: 20 Oct 2020

References

  • Adams, R.P. (2007). Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy (4th ed.). Illinois: Allured Publishing Corporation.
  • Amanzade, Y., Khosravi Dehaghi, N., Gohari, A.R., Monsef Esfehani, H.R., & Sadat Ebrahimi, S.E. (2011). Antioxidant activity of essential oil of Lallemantia iberica in flowering stage and post-flowering stage. International Journal of Biological Sciences, 6, 114–117.
  • AnastáCio, A., & Carvalho, I.S. (2012). Accumulation of fatty acids in purslane grown in hydroponic salt stress conditions. International Journal of Food Sciences and Nutrition, 64, 235–242. doi:10.3109/09637486.2012.713915
  • Ashraf, M., & Harris, P.G.C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166, 3–16. doi:10.1016/j.plantsci.2003.10.024
  • Aziz, E.E., Al-Amier, H., & Craker, L.E. (2008). Influence of salt stress on growth and essential oil production in peppermint, pennyroyal, and apple mint. Journal of Herbs, Spices & Medicinal Plants, 14, 77–87. doi:10.1080/10496470802341375
  • Chalbi, N., Hessini, K., Gandour, M., Mohamed, S.N., Smaoui, A., Abdelly, C., & Youssef, N.B. (2013). Are changes in membrane lipids and fatty acid composition related to salt-stress resistance in wild and cultivated barley? Journal of Plant Nutrition and Soil Science, 176, 138–147. doi:10.1002/jpln.201100413
  • Copetta, A., Lingua, G., & Berta, G. (2006). Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza, 16, 485–494. doi:10.1007/s00572-006-0065-6
  • Fikry, S., Khalil, N., & Salama, O. (2019). Chemical profiling, biostatic and biocidal dynamics of Origanum vulgare L. essential oil. AMB Express, 9. doi:10.1186/s13568-019-0764-y
  • Ghassemi Golezani, K., Chadordooz Jeddi, A., & Zafarani Moattar, P. (2011). Seed and mucilage yield of isabgol (Plantago ovata Forsk.) under salinity stress. Planta Medica, 77, PA7. doi:10.1055/s-0031-1282203
  • Gohari, G., Mohammadi, A., Akbari, A., Panahirad, S., Dadpour, M.R., Fotopoulos, V., & Kimura, S. (2020). Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Scientific Reports, 10. doi:10.1038/s41598-020-57794-1
  • Guenther, E. (1961). The essential oils. New York: David Van Nostrand Company Press.
  • Hassanvand, F., Rezaei Nejad, A., & Fanourakis, D. (2019). Morphological and physiological components mediating the silicon-induced enhancement of geranium essential oil yield under saline conditions. Industrial Crops and Products, 134, 19–25. doi:10.1016/j.indcrop.2019.03.049
  • ISO 659. (2009). Oil seeds–determination of oil content (reference method) (p. 659). EN ISO. International Organization for Standardization. https://www.iso.org/standard/43169.html
  • Jana, S., Patra, K., Sarkar, S., Jana, J., Mukherjee, G., Bhattacharjee, S., & Mandal, D.P. (2014). Antitumorigenic potential of linalool is accompanied by modulation of oxidative stress: An in vivo study in sarcoma-180 solid tumor model. Nutrition and Cancer, 66, 835–848. doi:10.1080/01635581.2014.904906
  • Kapoor, R., Chaudhary, V., & Bhatnagar, A.K. (2007). Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L. Mycorrhiza, 17, 581–587. doi:10.1007/s00572-007-0135-4
  • Khademian, R., Asghari, B., Sedaghati, B., & Yaghoubian, Y. (2019). Plant beneficial rhizospheric microorganisms (PBRMs) mitigate deleterious effects of salinity in sesame (Sesamum indicum L.): Physio-biochemical properties, fatty acids composition and secondary metabolites content. Industrial Crops and Products, 136, 129–139. doi:10.1016/j.indcrop.2019.05.002
  • Khalid, K.A., Abou Hussein, S.D., & Salman, S.R. (2005). Influence of sulphur and fertilizer (sulphur-oxidizing bacteria) on the growth, oil and chemical composition of celery plant. Annals of Agricultural Sciences, 50, 249–262. Retrieved from https://www.cabdirect.org/cabdirect/abstract/20053149456
  • Koohdar, F., Sheidai, M., Poode, Z.M., & Talebi, S.M. (2018). Pollen morphological analysis of the genus Lallemantia (Lamiaceae) of Iran. Acta Biologica Sibirica, 4, 115–120. doi:10.14258/abs.v4i3.4416
  • Kouba, M., & Mourot, J. (2011). A review of nutritional effects on fat composition of animal products with special emphasis on n-3 polyunsaturated fatty acids. Biochimie, 93, 13–17. doi:10.1016/j.biochi.2010.02.027
  • Linder, C.R. (2000). Adaptive evolution of seed oils in plants: Accounting for the biogeographic distribution of saturated and unsaturated fatty acids in seed oils. The American Naturalist, 156, 442–458. doi:10.1086/303399
  • Mohamed, A.A., Eweda, W.E.E., Heggo, A.M., & Hassan, E.A. (2014). Effect of dual inoculation with arbuscular mycorrhizal fungi and sulphur-oxidising bacteria on onion (Allium cepa L.) and maize (Zea mays L.) grown in sandy soil under green house conditions. Annals of Agricultural Sciences, 64, 109–118. doi:10.3109/09637486.2012.713915
  • Moreira, H., Pereira, S.I.A., Vega, A., Castro, P.M.L., & Marques, A.P.G.C. (2020). Synergistic effects of arbuscular mycorrhizal fungi and plant growth-promoting bacteria benefit maize growth under increasing soil salinity. Journal of Environmental Management, 257, 109982. doi:10.1016/j.jenvman.2019.109982
  • Morteza-Semnani, K. (2006). Essential Oil Composition of Lallemantia iberica Fisch. et C.A. Mey. Journal of Essential Oil Research, 18, 164–165. doi:10.1080/10412905.2006.9699055
  • Mosaffa, H.R., & Sepaskhah, A.R. (2019). Performance of irrigation regimes and water salinity on winter wheat as influenced by planting methods. Agricultural Water Management, 216, 444–456. doi:10.1016/j.agwat.2018.10.027
  • Mostafavi, S., Ali Asadi-Gharneh, H., & Miransari, M. (2019). The phytochemical variability of fatty acids in basil seeds (Ocimum basilicum L.) affected by genotype and geographical differences. Food Chemistry, 276, 700–706. doi:10.1016/j.foodchem.2018.10.027
  • Rahimzadeh, S., & Pirzad, A. (2019). Pseudomonas and mycorrhizal fungi co-inoculation alter seed quality of flax under various water supply conditions. Industrial Crops and Products, 129, 518–524. doi:10.1016/j.indcrop.2018.12.038
  • Selvakumar, G., Shagol, C.C., Kim, K., Han, S., & Sa, T. (2018). Spore associated bacteria regulates maize root K+/Na+ ion homeostasis to promote salinity tolerance during arbuscular mycorrhizal symbiosis. BMC Plant Biology, 18. doi:10.1186/s12870-018-1317-2
  • Shahhoseini, R., Saeidi, K., Babaahmadi, H., & Ebadi, M.T. (2018). Effect of fertilizers and superabsorbent hydrogel on the yield, essential oil content and composition of lemon verbena (Lippia citriodora Kunth.) Cultivated in Iran. Journal of Essential Oil Bearing Plants, 21, 230–236. doi:10.1080/0972060x.2017.1422808
  • Sharma, P.K., & Koul, A.K. (1986). Mucilage in seeds of Plantago ovata and its wild allies. Journal of Ethnopharmacology, 17, 289–295. doi:10.1016/0378-8741(86)90118-2
  • Tarraf, W., Ruta, C., Tagarelli, A., De Cillis, F., & De Mastro, G. (2017). Influence of arbuscular mycorrhizae on plant growth, essential oil production and phosphorus uptake of Salvia officinalis L. Industrial Crops and Products, 102, 144–153. doi:10.1016/j.indcrop.2017.03.010
  • Thokchom, S.D., Gupta, S., & Kapoor, R. (2020). Arbuscular mycorrhiza augments essential oil composition and antioxidant properties of Ocimum tenuiflorum L. – A popular green tea additive. Industrial Crops and Products, 153, 112418. doi:10.1016/j.indcrop.2020.112418
  • Tian, X., Guo, S., Zhang, S., Li, P., Wang, T., Ho, C., … Bai, N. (2019). Chemical characterization of main bioactive constituents in Paeonia ostii seed meal and GC‐MS analysis of seed oil. Journal of Food Biochemistry. doi:10.1111/jfbc.13088
  • Toussaint, J.P. (2007). Investigating physiological changes in the aerial parts of AM plants: What do we know and where should we be heading? Mycorrhiza, 17, 349–353. doi:10.1007/s00572-007-0133-6
  • Vinod, V.T.P., Sashidhar, R.B., Suresh, K.I., Rama Rao, B., Vijaya, U.V.R., & Prabhakar Rao, T. (2008). Morphological, physico- chemical and structural characterization of gum kondagogu (Cochlospermum gossypium): A tree gum from India. Food Hydrocolloids, 22, 899–915. doi:10.1016/j.foodhyd.2007.05.006
  • Yeilaghi, H., Arzani, A., Ghaderian, M., Fotovat, R., Feizi, M., & Pourdad, S.S. (2012). Effect of salinity on seed oil content and fatty acid composition of safflower (Carthamus tinctorius L.) genotypes. Food Chemistry, 130, 618–625. doi:10.1016/j.foodchem.2011.07.085
  • Zhou, M.-X., Classen, B., Agneessens, R., Godin, B., & Lutts, S. (2020). Salinity Improves zinc resistance in Kosteletzkya pentacarpos in relation to a modification in mucilage and polysaccharides composition. International Journal of Environmental Research, 14, 323–333. doi:10.1007/s41742-020-00258-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.