121
Views
0
CrossRef citations to date
0
Altmetric
Articles

Mapping and linkage analysis of epistatic QTLs for gynoecious trait (F) in cucumber (Cucumis sativus L.)

, , , , , & show all
Pages 344-355 | Accepted 20 Nov 2020, Published online: 04 Dec 2020

References

  • Bai, N., & Xu, H. (2013). Chapter one-unisexual cucumber flowers, sex and sex differentiation. International Review of Cell and Molecular Biology, 304, 1–55.
  • Beyer, E.M.J. (1976). Silver ion: A potent anti-ethylene agent in cucumber and tomato. HortScience, 11, 195–196.
  • Carlborg, O., & Haley, C.S. (2004). Epistasis: Too often neglected in complex trait studies? Nature Reviews Genetics, 5, 618. doi:10.1038/nrg1407
  • Cramer, C.S., & Wehner, T.C. (2000). Path analysis of the correlation between fruit number and plant traits of cucumber populations. HortScience, 35, 708–711. doi:10.21273/HORTSCI.35.4.708
  • Doerge, R.W., & Rebai, A. (1996). Significance thresholds for QTL interval mapping tests. Heredity, 76, 459. doi:10.1038/hdy.1996.68
  • Fan, Z., Robbins, M.D., & Staub, J.E. (2006). Population development by phenotypic selection with subsequent marker-assisted selection for line extraction in cucumber (Cucumis sativusL.). Theoretical and Applied Genetics, 112, 843–855. doi:10.1007/s00122-005-0186-x
  • Fazio, G., Staub, J.E., & Stevens, M.R. (2003). Genetic mapping and QTL analysis of horticultural traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Theoretical and Applied Genetics, 107, 864–874. doi:10.1007/s00122-003-1277-1
  • Holland, J.B. (2007). Genetic architecture of complex traits in plants. Current Opinion in Plant Biology, 10, 156–161. doi:10.1016/j.pbi.2007.01.003
  • Huang, S., Li, R., Zhang, Z., Li, L., Gu, X., Fan, W., Lucas, J, W., Wang, X., Xie, B., Ni, B., Ren, Y., ....... & Li, S. (2009). The genome of the cucumber, Cucumis sativus L. Nature Genetics, 41, 1275–1281. doi:10.1038/ng.475
  • Jat, G.S., Munshi, A.D., Behera, T.K., Choudhary, H., Dash, P., Ravindran, A., & Kumari, S. (2019). Genetics and molecular mapping of gynoecious (F) locus in cucumber (Cucumis sativus L.). The Journal of Horticultural Science and Biotechnology, 94, 24–32. doi:10.1080/14620316.2018.1449671
  • Kennard, W.C., Poetter, K., Dijkhuizen, A., Meglic, V., Staub, J.E., & Havey, M.J. (1994). Linkages among RFLP, RAPD, isozyme, disease resistance, and morphological markers in narrow and wide crosses of cucumber. Theoretical and Applied Genetics, 89, 42–48. doi:10.1007/BF00226980
  • Knopf, R.R., & Trebitsh, T. (2006). The female-specific Cs-ACS1G gene of cucumber. A case of gene duplication and recombination between the nonsex-specific 1-aminocyclopropane-1-carboxylate synthase gene and a branched-chain amino acid transaminase gene. Plant Cell Physiology, 47, 1217–1228. doi:10.1093/pcp/pcj092
  • Kubicki, B. (1969). Investigations on sex determination in cucumber (Cucumis sativus L.). VII. Trimonoecism. Genetica Polonica, 10, 123–143.
  • Kubicki, B. (1974). New sex types in cucumber and their uses in breeding work. Proc. XIX International Horticulture Congress, 3, 475–485.
  • Li, J., Qin, Z., Zhou, X., Xin, M., & Wu, T. (2011). Genetic analysis of gynoecious in cucumber (Cucumis sativus L.). Scientia Agricultura Sinica, 44, 3169–3176.
  • Li, Z., Han, Y., Niu, H., Wang, Y., Jiang, B., & Weng, Y. (2020). Gynoecy instability in cucumber (Cucumis sativus L.) is due to unequal crossover at the copy number variation-dependent femaleness (F) locus. Horticulture Research, 7, 1–15.
  • Liang, Q., Li, P., Hu, C., Hua, H., Li, Z., Rong, Y., … Hua, J. (2014). Dynamic QTL and epistasis analysis on seedling root traits in upland cotton. Journal of Genetics, 93, 63–78. doi:10.1007/s12041-014-0341-8
  • Lou, F.Q., Chen, F.J., Chen, Z.L., & Wolukau, N.J. (2007). Identification of an AFLP marker linked to a locus con-trolling gynoecy in cucumber and its conversion into SCAR marker useful for plant breeding. Acta Horticulturae, 763, 75–82.
  • Lower, R.L., & Edwards, M.D. (1986). Cucumber breeding. In: M.J. Bassett (Ed.), Breeding vegetable crops (pp. 173–207). Westport: AVI Publishing Co.
  • Miao, H., Zhang, S., Wang, X., Zhang, Z., Li, M., Mu, S., … Fang, Z. (2011). A linkage map of cultivated cucumber (Cucumis sativus L.) with 248 microsatellite marker loci and seven genes for horticulturally important traits. Euphytica, 182, 167–176. doi:10.1007/s10681-011-0410-5
  • Mibus, H., & Tatlioglu, T. (2004). Molecular characterization and isolation of the F/f gene for femaleness in cucumber (Cucumis sativus L.). Theoretical and Applied Genetics, 109, 1669–1676. doi:10.1007/s00122-004-1793-7
  • More, T.A., & Munger, H.A. (1987). Effect of temperature and photoperiod on gynoecious sex expression and stability in cucumber. Vegetable Science, 14, 42–50.
  • Pati, K., Munshi, A.D., & Behera, T.K. (2015). Inheritance of gynoecism in cucumber (Cucumis sativus L.) using genotype GBS-1 as gynoecious parent. Genetika, 47, 349–356. doi:10.2298/GENSR1501349P
  • Perl-Treves, R., & Rajagopalan, P.A. (2006). Close, yet separate: Patterns of male and female floral development in monoecious species. In C. Ainsworth (Ed.), Flower development and manipulation (pp. 117–146). Oxford: Blackwell.
  • Perl-Treves, R., Kahana, A., Rosenman, N., Xiang, Y., & Silberstein, L. (1998). Expression of multiple AGAMOUS-like genes in male and female flowers of cucumber (Cucumis sativus L.). Plant and Cell Physiology, 39, 701–710. doi:10.1093/oxfordjournals.pcp.a029424
  • Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S., & Rafalski, A. (1996). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding, 2, 225–238.
  • Ren, Y., Zhang, Z.H., Liu, J.H., Staub, J.E., Han, Y.H., Cheng, Z.C., … Huang, S.W. (2009). An integrated genetic and cytogenetic map of the cucumber genome. PLoS One, 4, e5795.
  • Serquen, F.C., Bacher, J., & Staub, J.E. (1997a). Genetic analysis of yield components in cucumber (Cucumis sativus L.) at low plant density. Journal of American Society of Horticulture Science, 122, 522–528. doi:10.21273/JASHS.122.4.522
  • Serquen, F.C., Bacher, J., & Staub, J.E. (1997b). Mapping and QTL analysis of a narrow cross in cucumber (Cucumis sativus L.) using random amplified polymorphic DNA markers. Molecular Breeding, 3, 257–268.
  • Shifriss, O. (1961). Sex control in cucumbers. Journal of Heredity, 52, 5–12. doi:10.1093/oxfordjournals.jhered.a107021
  • Staub, J.E., Robbins, M.D., & Wehner, T.C. (2008). Cucumber. In: J. Prohens & F. Nuez (Eds.), Vegetables I: Asteraceae, Brassicaceae, Chenopodiaceae, and Cucurbitaceae (pp. 241–282). New York: Springer.
  • Tanurdzic, M., & Banks, J.A. (2004). Sex-determining mechanisms in land plants. Plant Cell, 16, S61–S71. doi:10.1105/tpc.016667
  • Trebitsh, T., Rudich, J., & Riov, J. (1987). Auxin, biosynthesis of ethylene and sex expression in cucumber (Cucumis sativus). Plant Growth Regulation, 5, 105–113. doi:10.1007/BF00024738
  • Trebitsh, T., Staub, J.E., & ONeill, S.D. (1997). Identification of a 1 aminocyclopropane-1- carboxylate synthase gene linked to the Female gene (F) that determines female sex expression in cucumber (Cucumis sativus L.). Plant Physiology, 113, 987–995. doi:10.1104/pp.113.3.987
  • Win, K.T., Zhang, C., Song, K., Lee, J.H., & Lee, S. (2015). Development and characterization of a co-dominant molecular marker via sequence analysis of a genomic region containing the Female (F) locus in cucumber (Cucumis sativus L.). Molecular Breeding, 35, 229. doi:10.1007/s11032-015-0424-0
  • Wu, T., Qin, Z., Feng, Z., Zhou, X., Xin, M., & Du, Y. (2012). Functional analysis of the promoter of a female-specific cucumber CsACS1G gene. Plant Molecular Biology Reporter, 30, 235–241. doi:10.1007/s11105-011-0318-1
  • Yuan, X.J., Pan, J.S., Cai, R., Guan, Y., Liu, L.Z., Zhang, W.W., … Zhu, L.H. (2008). Genetic mapping and QTL analysis of fruit and flower related traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Euphytica, 164, 473–491. doi:10.1007/s10681-008-9722-5
  • Zhang, Z., Mao, L., Chen, H., Bu, F., Li, G., Sun, J., … Huang, S. (2015). Genome-wide mapping of structural variations reveals a copy number variant that determines reproductive morphology in cucumber. The Plant Cell, 27, 1595–1604. doi:10.1105/tpc.114.135848
  • Zhou, S., Zhang, P., Zhu, Y., Chen, X., & Chen, L. (2013). Identification of SSR marker linked to gynoecious loci in cucumber (Cucumis sativus L.). Journal of Zhejiang University (Agriculture and Life Sciences), 39, 291–298.
  • Zhu, W.Y., Huang, L., Chen, L., Yang, J.T., Wu, J.N., Qu, M.L., … Pan, J.S. (2016). A high-density genetic linkage map for cucumber (Cucumis sativus L.): Based on specific length amplified fragment (SLAF) sequencing and QTL analysis of fruit traits in cucumber. Frontiers in Plant Science, 19, 7–437.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.