185
Views
0
CrossRef citations to date
0
Altmetric
Articles

Comparative transcriptome and iTRAQ-based proteome analysis in mature leaves of Brassica carinata provides insights into the purple leaf color diversity

, , , , , & ORCID Icon show all
Pages 444-455 | Accepted 08 Dec 2020, Published online: 23 Dec 2020

References

  • Abebe, D., Dawit, T., Getahun, M., & Debritu, B. (1992). Ethiopia’s genetic resources of oilseeds. Proc. 1 National Oilseeds Workshop (pp. 12–17). Addis Ababa, Ethiopia: Institute of Agricultural Research.
  • Al Sane, K.O., & Hesham, A.E.-L. (2015). Biochemical and genetic evidences of anthocyanin biosynthesis and accumulation in a selected tomato mutant. Rendiconti Lincei, 26, 293–306. doi:10.1007/s12210-015-0446-x
  • Alemayehu, N., & Becker, H. (2002). Genotypic diversity and patterns of variation in a germplasm material of Ethiopian mustard (Brassica carinata A. Braun). Genetic Resources and Crop Evolution, 49, 573–582. doi:10.1023/A:1021204412404
  • Asare, E.K., Båga, M., Rossnagel, B.G., & Chibbar, R.N. (2012). Polymorphism in the Barley granule bound starch synthase 1 (Gbss1) gene associated with grain starch variant amylose concentration. Journal of Agricultural and Food Chemistry, 60, 10082–10092. doi:10.1021/jf302291t
  • Bowles, D. (2002). A multigene family of glycosyltransferases in a model plant, Arabidopsis thaliana. Biochemical Society Transactions, 30, 301–306. doi:10.1042/bst0300301
  • Chen, J., Liu, S.S., Kohler, A., Yan, B., Luo, H.M., Chen, X.M., & Guo, S.X. (2017). iTRAQ and RNA-seq analyses provide new insights into regulation mechanism of symbiotic germination of dendrobium officinale seeds (Orchidaceae). Journal of Proteome Research, 16, 2174–2187.
  • Chen, T., Zhang, L., Shang, H., Liu, S., Peng, J., Gong, W., … Yuan, Y. (2016). iTRAQ-based quantitative proteomic analysis of cotton roots and leaves reveals pathways associated with salt stress. PLoS One, 11, e0148487–e0148487. doi:10.1371/journal.pone.0148487
  • Cheng, G.W., & Breen, P.J. (1991). Activity of phenylalanine ammonia-lyase (PAL) and concentrations of anthocyanins and phenolics in developing strawberry fruit. Journal of the American Society for Horticultural Science, 116(5), 865–869.
  • Chiou, T.-J., & Bush, D.R. (1998). Sucrose is a signal molecule in assimilate partitioning. Proceedings of the National Academy of Sciences, 95, 4784–4788. doi:10.1073/pnas.95.8.4784
  • Chu, P., Yan, G.X., Yang, Q., Zhai, L.N., Zhang, C., Zhang, F.Q., & Guan, R.Z. (2015). iTRAQ-based quantitative proteomics analysis of Brassica napus leaves reveals pathways associated with chlorophyll deficiency. Journal of Proteomics, 113, 244–259. doi:10.1016/j.jprot.2014.10.005
  • Conesa, A., Götz, S., García-Gómez, J.M., Terol, J., Talón, M., & Robles, M. (2005). Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21, 3674–3676. doi:10.1093/bioinformatics/bti610
  • D’auria, J.C., Reichelt, M., Luck, K., Svatoš, A., & Gershenzon, J. (2007). Identification and characterization of the BAHD acyltransferase malonyl CoA: Anthocyanidin 5-O-glucoside-6″-O-malonyltransferase (At5MAT) in Arabidopsis thaliana. FEBS Letters, 581, 872–878. doi:10.1016/j.febslet.2007.01.060
  • Dong, T., Han, R., Yu, J., Zhu, M., Zhang, Y., Gong, Y., & Li, Z. (2019). Anthocyanins accumulation and molecular analysis of correlated genes by metabolome and transcriptome in green and purple asparaguses (Asparagus officinalis, L.). Food Chemistry, 271, 18–28. doi:10.1016/j.foodchem.2018.07.120
  • Ferarsa, S., Zhang, W., Moulai-Mostefa, N., Ding, L., Jaffrin, M.Y., & Grimi, N. (2018). Recovery of anthocyanins and other phenolic compounds from purple eggplant peels and pulps using ultrasonic-assisted extraction. Food and Bioproducts Processing, 109, 19–28. doi:10.1016/j.fbp.2018.02.006
  • Fofana, B., D.J. McNally, C. Labbe, R. Boulanger, N. Benhamou, A. Seguin, and R.R. Belanger. (2002). Milsana-induced resistance in powdery mildew-infected cucumber plants correlates with the induction of chalcone synthase and chalcone isomerase. Molecular Plant Pathology. 61:121-132. doi: 10.1006/pmpp.2002.0420
  • Fu, D., Jiang, L., Mason, A.S., Xiao, M., Zhu, L., Li, L., … Huang, C.-H. (2016). Research progress and strategies for multifunctional rapeseed: A case study of China. Journal of Integrative Agriculture, 15, 1673–1684. doi:10.1016/S2095-3119(16)61384-9
  • Gamel, T.H., Wright, A.J., Tucker, A.J., Pickard, M., Rabalski, I., Podgorski, M., … Abdel-Aal, E.-S.M. (2019). Absorption and metabolites of anthocyanins and phenolic acids after consumption of purple wheat crackers and bars by healthy adults. Journal of Cereal Science, 86, 60–68. doi:10.1016/j.jcs.2018.11.017
  • Ge, X., Zhang, C., Wang, Q., Yang, Z., Wang, Y., Zhang, X., … Li, F. (2015). iTRAQ protein profile differential analysis between somatic globular and cotyledonary embryos reveals stress, hormone, and respiration involved in increasing plantlet regeneration of Gossypium hirsutum L. Journal of Proteome Research, 14, 268–278. doi:10.1021/pr500688g
  • Getinet, A., Rakow, G., & Downey, R.K. (1996). Agronomic performance and seed quality of ethiopian mustard in saskatchewan. Canadian Journal of Plant Science, 76, 387–392. doi:10.4141/cjps96-069
  • Guo, S., Zou, J., Li, R., Long, Y., Chen, S., & Meng, J. (2012). A genetic linkage map of Brassica carinata constructed with a doubled haploid population. Theoretical and Applied Genetics, 125, 1113–1124. doi:10.1007/s00122-012-1898-3
  • Guo, Y., Chang, X., Zhu, C., Zhang, S., Li, X., Fu, H., … Lai, Z. (2019). De novo transcriptome combined with spectrophotometry and gas chromatography-mass spectrometer (GC-MS) reveals differentially expressed genes during accumulation of secondary metabolites in purple-leaf tea (Camellia sinensis cv Hongyafoshou). The Journal of Horticultural Science and Biotechnology, 94, 349–367. doi:10.1080/14620316.2018.1521708
  • Hu, J., & Quiros, C.F. (1996). Application of molecular markers and cytogenetic stocks to brassica genetics, breeding and evolution. Acta horticulturae, 79–86. doi:10.17660/ActaHortic.1996.407.8
  • Jiang, Y., Tian, E., Li, R., Chen, L., & Meng, J. (2007). Genetic diversity of Brassica carinata with emphasis on the interspecific crossability with B. rapa. Plant Breeding, 126, 487–491. doi:10.1111/j.1439-0523.2007.01393.x
  • Khattak, A.N., Wang, T., Yu, K., Yang, R., Wan, W., Ye, B., & Tian, E. (2019). Exploring the basis of 2-propenyl and 3-butenyl glucosinolate synthesis by QTL mapping and RNA-sequencing in Brassica juncea. PLoS One, 14, e0220597. doi:10.1371/journal.pone.0220597
  • Khoo, H.E., Azlan, A., Tang, S.T., & Lim, S.M. (2017). Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research, 61, 1361779. doi:10.1080/16546628.2017.1361779
  • Lai, Y.-S., Li, S., Tang, Q., Li, H.-X., Chen, S.-X., Li, P.-W., … Guo, X. (2016). The dark-purple tea cultivar ‘Ziyan’ accumulates a large amount of delphinidin-related anthocyanins. Journal of Agricultural and Food Chemistry, 64, 2719–2726. doi:10.1021/acs.jafc.5b04036
  • Lao, F., & Giusti, M.M. (2016). Quantification of purple corn (Zea mays L.) anthocyanins using spectrophotometric and HPLC approaches: Method comparison and correlation. Food Analytical Methods, 9, 1367–1380. doi:10.1007/s12161-015-0318-0
  • Li, D., Zhang, X., Xu, Y., Li, L., Aghdam, M.S., & Luo, Z. (2019). Effect of exogenous sucrose on anthocyanin synthesis in postharvest strawberry fruit. Food Chemistry, 289, 112–120. doi:10.1016/j.foodchem.2019.03.042
  • Li, H., Zhu, L., Yuan, G., Heng, S., Yi, B., Ma, C., … Wen, J. (2016). Fine mapping and candidate gene analysis of an anthocyanin-rich gene, BnaA.PL1, conferring purple leaves in Brassica napus L. Molecular Genetics and Genomics, 291, 1523–1534. doi:10.1007/s00438-016-1199-7
  • Lukens, L.N., Quijada, P.A., Udall, J., Pires, J.C., Schranz, M.E., & Osborn, T.C. (2004). Genome redundancy and plasticity within ancient and recent Brassica crop species. Biological Journal of the Linnean Society, 82, 665–674. doi:10.1111/j.1095-8312.2004.00352.x
  • Luo, X., Cao, D., Li, H., Zhao, D., Xue, H., Niu, J., … Cao, S. (2018). Complementary iTRAQ-based proteomic and RNA sequencing-based transcriptomic analyses reveal a complex network regulating pomegranate (Punica granatum L.) fruit peel colour. Scientific Reports, 8, 12362. doi:10.1038/s41598-018-30088-3
  • Mazza, G., & Miniati, E. (1993). Anthocyanins in fruits, vegetables, and grains. In Anthocyanins in fruits vegetables & grains. CRC press.
  • Meng, J., Shi, S., Gan, L., Li, Z., & Qu, X. (1998). The production of yellow-seeded Brassica napus (AACC) through crossing interspecific hybrids of B. campestris (AA) and B. carinata (BBCC) with B. napus. Euphytica, 103, 329–333. doi:10.1023/A:1018646223643
  • Miyahara, T., Sakiyama, R., Ozeki, Y., & Sasaki, N. (2013). Acyl-glucose-dependent glucosyltransferase catalyzes the final step of anthocyanin formation in Arabidopsis. Journal of plant physiology, 170(6), 619–624. doi:10.1016/j.jplph.2012.12.001
  • Morreel, K., Goeminne, G., Storme, V., Sterck, L., Ralph, J., Coppieters, W., ... & Boerjan, W. (2006). Genetical metabolomics of flavonoid biosynthesis in Populus: a case study. The Plant Journal, 47(2), 224–237. doi: 10.1111/j.1365-313X.2006.02786.x
  • Muers, M. (2011). Transcriptome to proteome and back to genome. Nature Reviews. Genetics, 12, 518. doi:10.1038/nrg3037
  • Ou, L.-J., Zhang, Z.-Q., Dai, X.-Z., & Zou, -X.-X. (2013). Photooxidation tolerance characters of a new purple pepper. PLoS One, 8, e63593. doi:10.1371/journal.pone.0063593
  • Pandey, A., & Mann, M. (2000). Proteomics to study genes and genomes. Nature, 405, 837–846. doi:10.1038/35015709
  • Pandey, A., Alok, A., Lakhwani, D., Singh, J., Asif, M. H., & Trivedi, P. K. (2016). Genome-wide expression analysis and metabolite profiling elucidate transcriptional regulation of flavonoid biosynthesis and modulation under abiotic stresses in banana. Scientific reports, 6, 31361. doi:10.1038/srep31361
  • Pelletier, M. K., & Shirley, B. W. (1996). Analysis of flavanone 3-hydroxylase in Arabidopsis seedlings (Coordinate regulation with chalcone synthase and chalcone isomerase). Plant physiology, 111(1), 339–345. doi:10.1104/pp.111.1.339
  • Pojer, E., Mattivi, F., Johnson, D., & Stockley, C.S. (2013). The case for anthocyanin consumption to promote human health: A review. Comprehensive Reviews in Food Science and Food Safety, 12, 483–508.
  • Prior, R.L., & Xianli, W. (2006). Anthocyanins: Structural characteristics that result in unique metabolic patterns and biological activities. Free Radical Research, 40, 1014–1028. doi:10.1080/10715760600758522
  • Shirley, B. W. (1996). Flavonoid biosynthesis:‘new’functions for an ‘old’pathway. Trends in plant science, 1(11), 377-382. doi:10.1016/S1360-1385(96)80312-8
  • Song, K., Osborn, T.C., & Williams, P.H. (1990). Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). Theoretical and Applied Genetics, 79, 497–506. doi:10.1007/BF00226159
  • Sun, D., Huang, S., Cai, S., Cao, J., & Han, P. (2015). Digestion property and synergistic effect on biological activity of purple rice (Oryza sativa L.) anthocyanins subjected to a simulated gastrointestinal digestion in vitro. Food Research International, 78, 114–123. doi:10.1016/j.foodres.2015.10.029
  • Szymanowska, U., Złotek, U., Karaś, M., & Baraniak, B. (2015). Anti-inflammatory and antioxidative activity of anthocyanins from purple basil leaves induced by selected abiotic elicitors. Food Chemistry, 172, 71–77. doi:10.1016/j.foodchem.2014.09.043
  • Taylor, D.C., Falk, K.C., Palmer, C.D., Hammerlindl, J., Babic, V., Mietkiewska, E., … Keller, W.A. (2010). Brassica carinata – A new molecular farming platform for delivering bio-industrial oil feedstocks: Case studies of genetic modifications to improve very long-chain fatty acid and oil content in seeds. Biofuels, Bioproducts and Biorefining, 4, 538–561.
  • Tian, E., Jiang, Y., Chen, L., Zou, J., Liu, F., & Meng, J. (2010). Synthesis of a Brassica trigenomic allohexaploid (B. carinata × B. rapa) de novo and its stability in subsequent generations. Theoretical and Applied Genetics, 121, 1431–1440. doi:10.1007/s00122-010-1399-1
  • Tohge, T., Nishiyama, Y., Hirai, M.Y., Yano, M., Nakajima, J.-I., Awazuhara, M., … Saito, K. (2005). Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. The Plant Journal, 42, 218–235. doi:10.1111/j.1365-313X.2005.02371.x
  • Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D.R., … Pachter, L. (2012). Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols, 7, 562–578. doi:10.1038/nprot.2012.016
  • Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., Van Baren, M.J., … Pachter, L. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 28, 511–515.
  • Turturica, M., Oancea, A.-M., Rapeanu, G., & Bahrim, G. (2015). Anthocyanins: Naturally occurring fruit pigments with functional properties. Annals of the University Dunarea De Jos of Galati. Fascicle VI: Food Technology, 39, 9–24.
  • U. (1935). Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Journal of Japanese Bontany, 7, 389–452.
  • Wang, A., Li, R., Ren, L., Gao, X., Zhang, Y., Ma, Z., … Luo, Y. (2018a). A comparative metabolomics study of flavonoids in sweet potato with different flesh colors (Ipomoea batatas (L.) Lam). Food Chemistry, 260, 124–134. doi:10.1016/j.foodchem.2018.03.125
  • Wang, C., Li, H., Li, Y., Meng, Q., Xie, F., Xu, Y., & Wan, Z. (2019). Genetic characterization and fine mapping BrCER4 in involved cuticular wax formation in purple cai-tai (Brassica rapa L. var. purpurea). Molecular Breeding, 39, 12. doi:10.1007/s11032-018-0919-6
  • Wang, J., Zhang, H., Zhang, J., Zhang, H., Liu, B., Hou, Y., & Qiu, N. (2018b). Changes of anthocyanin content and photosynthetic function of purple leaf plum leaves during spring maturation. Forestry Science & Technology, 43, 13–17.
  • Wang, L., Feng, Z., Wang, X., Wang, X., & Zhang, X. (2010). DEGseq: An R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics, 26, 136–138. doi:10.1093/bioinformatics/btp612
  • Wang, S., Pan, D., Lv, X., Song, X., Qiu, Z., Huang, C., … Chen, W. (2016). Proteomic approach reveals that starch degradation contributes to anthocyanin accumulation in tuberous root of purple sweet potato. Journal of Proteomics, 143, 298–305. doi:10.1016/j.jprot.2016.03.010
  • Wang, W., Zhang, D., Yu, S., Liu, J., Wang, D., Zhang, F., … Su, T. (2014). Mapping the BrPur gene for purple leaf color on linkage group A03 of Brassica rapa. Euphytica, 199, 293–302. doi:10.1007/s10681-014-1128-y
  • Wang, Z., Cui, Y., Vainstein, A., Chen, S., & Ma, H. (2017). Regulation of Fig (Ficus carica L.) fruit color: Metabolomic and transcriptomic analyses of the flavonoid biosynthetic pathway. Frontiers in Plant Science, 8, 1990. doi:10.3389/fpls.2017.01990
  • Warwick, S.I. (2011). Brassicaceae in agriculture. In R. Schmidt & I. Bancroft (Eds.), Genetics and genomics of the brassicaceae (pp. 33–65). New York: Springer New York.
  • Warwick, S.I., Gugel, R.K., Mcdonald, T., & Falk, K.C. (2006). Genetic variation of Ethiopian mustard (Brassica carinata A. Braun) Germplasm in Western Canada. Genetic Resources and Crop Evolution, 53, 297–312. doi:10.1007/s10722-004-6108-y
  • Wiese, S., Reidegeld, K.A., Meyer, H.E., & Warscheid, B. (2007). Protein labeling by iTRAQ: A new tool for quantitative mass spectrometry in proteome research. PROTEOMICS, 7, 340–350. doi:10.1002/pmic.200600422
  • Wilmouth, R. C., Turnbull, J. J., Welford, Richard W.D.., Clifton, I. J., Prescott, A. G., & Schofield, C. J. (2002). Structure and mechanism of anthocyanidin synthase from Arabidopsis thaliana. Structure, 10(1), 93–103. doi:10.1016/S0969-2126(01)00695-5
  • Winkel-Shirley, B. (2001). Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant physiology, 126(2), 485–493. https://doi.org/10.1104/pp.126.2.485
  • Xiao, Y., Chen, L., Zou, J., Tian, E., Xia, W., & Meng, J. (2010). Development of a population for substantial new type Brassica napus diversified at both A/C genomes. Theoretical and Applied Genetics, 121, 1141–1150. doi:10.1007/s00122-010-1378-6
  • Yan, C., An, G., Zhu, T., Zhang, W., Zhang, L., Peng, L., … Kuang, H. (2019). Independent activation of the BoMYB2 gene leading to purple traits in Brassica oleracea. Theoretical and Applied Genetics, 132, 895–906. doi:10.1007/s00122-018-3245-9
  • Yang, L.-T., Qi, Y.-P., Lu, Y.-B., Guo, P., Sang, W., Feng, H., … Chen, L.-S. (2013). iTRAQ protein profile analysis of Citrus sinensis roots in response to long-term boron-deficiency. Journal of Proteomics, 93, 179–206. doi:10.1016/j.jprot.2013.04.025
  • Yonekura‐Sakakibara, K., Fukushima, A., Nakabayashi, R., Hanada, K., Matsuda, F., Sugawara, S., ... & Wangwattana, B. (2012). Two glycosyltransferases involved in anthocyanin modification delineated by transcriptome independent component analysis in Arabidopsis thaliana. The Plant Journal, 69(1), 154–167. doi:10.1111/j.1365-313X.2011.04779.x
  • Yu, X. (2000). Analysis and study of anthocyanins in plant leave. Modern Instruments, 4, 37–38.
  • Zhang, H., Hassan, Y.I., Renaud, J., Liu, R., Yang, C., Sun, Y., & Tsao, R. (2017a). Bioaccessibility, bioavailability, and anti-inflammatory effects of anthocyanins from purple root vegetables using mono- and co-culture cell models. Molecular Nutrition & Food Research, 61, 1600928. doi:10.1002/mnfr.201600928
  • Zhang, W., Hu, D., Raman, R., Guo, S., Wei, Z., Shen, X., … Zou, J. (2017b). Investigation of the genetic diversity and quantitative trait loci accounting for important agronomic and seed quality traits in Brassica carinata. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.00615
  • Zhao, Z., Xiao, L., Xu, L., Xing, X., Tang, G., & Du, D. (2017). Fine mapping the BjPl1 gene for purple leaf color in B2 of Brassica juncea L. through comparative mapping and whole-genome re-sequencing. Euphytica, 213, 80. doi:10.1007/s10681-017-1868-6
  • Ziegler, H. (1975). Nature of transported substances. In: M.H. Zimmermann & J.A. Milburn (Eds.), Transport in plants I: Phloem transport (pp. 59–100). Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Zou, J., Hu, D., Mason, A.S., Shen, X., Wang, X., Wang, N., … Meng, J. (2018). Genetic changes in a novel breeding population of Brassica napus synthesized from hundreds of crosses between B. rapa and B. carinata. Plant Biotechnology Journal, 16, 507–519. doi:10.1111/pbi.12791
  • Zou, J., Raman, H., Guo, S., Hu, D., Wei, Z., Luo, Z., … Meng, J. (2014). Constructing a dense genetic linkage map and mapping QTL for the traits of flower development in Brassica carinata. Theoretical and Applied Genetics, 127, 1593–1605. doi:10.1007/s00122-014-2321-z
  • Zou, J., Zhu, J., Huang, S., Tian, E., Xiao, Y., Fu, D., … Meng, J. (2010). Broadening the avenue of intersubgenomic heterosis in oilseed Brassica. Theoretical and Applied Genetics, 120, 283–290. doi:10.1007/s00122-009-1201-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.