170
Views
1
CrossRef citations to date
0
Altmetric
Articles

Characterisation of induced Malus x domestica ‘Royal Gala’ cell differentiation by using different hormones in cell cultures

, , , &
Pages 626-640 | Accepted 07 Mar 2022, Published online: 21 Mar 2022

References

  • Anastasiou, E., & Lenhard, M. (2008). Control of plant organ size. In: Plant growth signaling (pp. 25–45). Berlin, Heidelberg: Springer.
  • Atkinson, R.G., Sutherland, P. W., Johnston, S. L., Gunaseelan, K., Hallett, I. C., Mitra, D., & Schaffer, R. J., (2012). Down-regulation of POLYGALACTURONASE1 alters firmness, tensile strength and water loss in apple (Malus x domestica) fruit. BMC Plant Biology, 12, 1. doi:10.1186/1471-2229-12-129
  • Barbulova, A., Apone, F., & Colucci, G. (2014). Plant cell cultures as source of cosmetic active ingredients. Cosmetics, 1, 94–104. doi:10.3390/cosmetics1020094
  • Barker, L.D., Templeton, M.D., & Ferguson, I.B. (1998). A 67-kDa plasma-membrane-bound Ca2+-stimulated protein kinase active in sink tissue of higher plants. Planta, 205, 197–204. doi:10.1007/s004250050312
  • Bommineni, V., Mathews, H., Samuel, S.B., Kramer, M., & Wagner, D. R. (2001). A new method for rapid in vitro propagation of apple and pear. HortScience, 36, 1102–1106. doi:10.21273/HORTSCI.36.6.1102
  • Bowen, J., Lay-Yee, M., Plummer, K. I. M., & Ferguson, I. A. N., (2002). The heat shock response is involved in thermotolerance in suspension-cultured apple fruit cells. Journal of Plant Physiology, 159, 599–606. doi:10.1078/0176-1617-0752
  • Chagné, D., Crowhurst, R. N., Pindo, M., Thrimawithana, A., Deng, C., Ireland, H., & Velasco, R., (2014). The draft genome sequence of European pear (Pyrus communis L.‘Bartlett’). PloS one, 9, e92644. doi:10.1371/journal.pone.0092644
  • Chang, S., Puryear, J., & Cairney, J. (1993). A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter, 11, 113–116. doi:10.1007/BF02670468
  • Church, D.L., & Galston, A.W. (1988). Hormonal induction and antihormonal inhibition of tracheary element differentiation in Zinnia cell cultures. Phytochemistry, 27, 2435–2439. doi:10.1016/0031-9422(88)87008-0
  • Codron, H., Latché, A., Pech, J. C., Nebie, B., & Fallot, J. (1979). Control of quiescence and viability in auxin-deprived pear cells in batch and continuous culture. Plant Science Letters, 17, 29–35. doi:10.1016/0304-4211(79)90105-6
  • Costa, F., Stella, S., Van de Weg, W.E., Guerra, W., Cecchinel, M., Dallavia, J., … Sansavini, S. (2005). Role of the genes Md-ACO1 and Md-ACS1 in ethylene production and shelf life of apple (Malus domestica Borkh). Euphytica, 141, 181–190. doi:10.1007/s10681-005-6805-4
  • Dash, M., & Malladi, A. (2012). The AINTEGUMENTA genes, MdANT1 and MdANT2, are associated with the regulation of cell production during fruit growth in apple (Malus × domestica Borkh.). BMC Plant Biology, 12, 98. doi:10.1186/1471-2229-12-98
  • Demura, T. (2014). Tracheary element differentiation. Plant Biotechnology Reports, 8, 17–21. doi:10.1007/s11816-013-0293-0
  • Devoghalaere, F., Doucen, T., Guitton, B., Keeling, J., Payne, W., Ling, T.J., & David, K. M. (2012). A genomics approach to understanding the role of auxin in apple (Malus x domestica) fruit size control. BMC Plant Biol, 12, 7. doi:10.1186/1471-2229-12-7
  • Ferguson, I.B., Lurie, S., & Bowen, J.H. (1994). Protein synthesis and breakdown during heat shock of cultured pear (Pyrus communis L.) cells. Plant Physiology, 104, 1429–1437. doi:10.1104/pp.104.4.1429
  • Gagné, S., Cluzet, S., Mérillon, J. M., & Gény, L., (2011). ABA initiates anthocyanin production in grape cell cultures. Journal of Plant Growth Regulation, 30, 1–10. doi:10.1007/s00344-010-9165-9
  • Gopitha, K., Bhavani, A.L., & Senthilmanickam, J. (2010). Effect of the different auxins and cytokinins in callus induction, shoot, root regeneration in sugarcane. Int. J. Pharma and Bio. Sci, 1, 1–7.
  • Hayashi, H., Czaja, I., Lubenow, H., Schell, J., & Walden, R. (1992). Activation of a plant gene by T-DNA tagging: Auxin-independent growth in vitro. Science, 258, 1350–1353. doi:10.1126/science.1455228
  • Ireland, H.S., Yao, J.-L., Tomes, S., Sutherland, P.W., Nieuwenhuizen, N., Gunaseelan, K., & Schaffer, R.J. (2013). Apple SEPALLATA1/2 -like genes control fruit flesh development and ripening. Plant J, 73, 1044–1056. doi:10.1111/tpj.12094
  • Janssen, B.J., Thodey, K., Schaffer, R. J., Alba, R., Balakrishnan, L., Bishop, R., & Ward, S., (2008). Global gene expression analysis of apple fruit development from the floral bud to ripe fruit. BMC Plant Biol, 8, 16. doi:10.1186/1471-2229-8-16
  • Jha, T.B. (2005). Plant tissue culture: Basic and applied. India: Universities Press.
  • Johnston, J.W., Gunaseelan, K., Pidakala, P., Wang, M., & Schaffer, R. J., (2009). Co-ordination of early and late ripening events in apples is regulated through differential sensitivities to ethylene. Journal of Experimental Botany 60(9), 122.
  • Joyner, E.Y., Boykin, L.S., & Lodhi, M.A. (2010). Callus induction and organogenesis in soybean [Glycine max (L.) Merr.] cv. Pyramid from mature cotyledons and embryos. The Open Plant Science Journal, 4, 18–21. doi:10.2174/1874294701004010018
  • Kolewe, M.E., Roberts, S.C., & Henson, M.A. (2012). A population balance equation model of aggregation dynamics in Taxus suspension cell cultures. Biotechnology and Bioengineering, 109, 472–482. doi:10.1002/bit.23321
  • Liu, J.-H., Nada, K., Honda, C., Kitashiba, H., Wen, X. P., Pang, X. M., & Moriguchi, T., (2006). Polyamine biosynthesis of apple callus under salt stress: Importance of the arginine decarboxylase pathway in stress response. Journal of Experimental Botany, 57, 2589–2599. doi:10.1093/jxb/erl018
  • Livak, K.J., & Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods, 25, 402–408. doi:10.1006/meth.2001.1262
  • Ma, J.-H., Yao, J.-L., Cohen, D., & Morris, B. (1998). Ethylene inhibitors enhance in vitro root formation from apple shoot cultures. Plant Cell Reports, 17, 211–214. doi:10.1007/s002990050380
  • Matsuoka, H., & Hinata, K. (1979). NAA-induced organogenesis and embryogenesis in hypocotyl callus of solarium melongena L. Journal of Experimental Botany, 30, 363–370. doi:10.1093/jxb/30.3.363
  • McAtee, P., Karim, S., Schaffer, R. J., & David, K., (2013). A dynamic interplay between phytohormones is required for fruit development, maturation, and ripening. Front Plant Sci, 4, 79. doi:10.3389/fpls.2013.00079
  • McMeans, O., Skirvin, R. M., Otterbacher, A., & Mitiku, G., (1998). Assessment of tissue culture-derived ‘Gala’and ‘Royal Gala’apples (Malus× domestica Borkh.) for somaclonal variation. Euphytica, 103, 251–257. doi:10.1023/A:1018316422435
  • Mewis, I., Smetanska, I. M., Müller, C. T., & Ulrichs, C., (2011). Specific poly-phenolic compounds in cell culture of Vitis vinifera L. cv Gamay Fréaux. Applied Biochemistry and Biotechnology, 164, 148–161. doi:10.1007/s12010-010-9122-x
  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497. doi:10.1111/j.1399-3054.1962.tb08052.x
  • Mustafa, N.R., de Winter, W., van Iren, F., & Verpoorte, R. (2011). Initiation, growth and cryopreservation of plant cell suspension cultures. Nature Protocols, 6, 715–742. doi:10.1038/nprot.2010.144
  • Piagnani, M.C., Maffi, D., Rossoni, M., & Chiozzotto, R. (2008). Morphological and physiological behaviour of sweet cherry ‘somaclone’HS plants in field. Euphytica, 160, 165–173. doi:10.1007/s10681-007-9502-7
  • Qu, J., Zhang, W., & Yu, X. (2011). A combination of elicitation and precursor feeding leads to increased anthocyanin synthesis in cell suspension cultures of Vitis vinifera. Plant Cell, Tissue and Organ Culture (PCTOC), 107, 261–269. doi:10.1007/s11240-011-9977-8
  • Sass, E. (1964). HOHN. botanical microtechnique, the Iowa State. USA: University Press.
  • Schaffer, R.J., Friel, E. N., Souleyre, E.J.F., Bolitho, K., Thodey, K., Ledger, S., & Newcomb, R.D. (2007). A genomics approach reveals that aroma production in apple is controlled by ethylene predominantly at the final step in each biosynthetic pathway. Plant Physiology, 144, 1899–1912. doi:10.1104/pp.106.093765
  • Silva, F.-D., Menéndez-Yuffá, A., Callejas, L., Lopez, H., & Olmos, J. (2006). Viability in protoplasts and cell suspensions of Coffea arabica cv. Catimor. Electronic Journal of Biotechnology, 9, doi:10.2225/vol9-issue5-fulltext-7
  • Skoog, F., & Miller, C. (1957). Chemical regulation of growth and organ formation in plant tissue cultured. In Vitro. symp. soc. exp. biol, 11, 118–131. USA.
  • Smolenskaya, I., Reshetnyak, O.V., Smirnova, Y.N., Chernyak, N.D., Globa, E.B., Nosov, A.M., & Nosov, A.V. (2007). Opposite effects of synthetic auxins, 2, 4-dichlorophenoxyacetic acid and 1-naphthalene acetic acid on growth of true ginseng cell culture and synthesis of ginsenosides. Russian Journal of Plant Physiology, 54, 215–223. doi:10.1134/S1021443707020094
  • Srivastava, A., & Handa, A.K. (2005). Hormonal regulation of tomato fruit development: A molecular perspective. Journal of Plant Growth Regulation, 24, 67–82. doi:10.1007/s00344-005-0015-0
  • Staden, J.V., & Davey, J. (1979). The synthesis, transport and metabolism of endogenous cytokinins. Plant, Cell & Environment, 2, 93–106. doi:10.1111/j.1365-3040.1979.tb00780.x
  • Swarup, R., Parry, G., Graham, N., Allen, T., and Bennett, M., (2002). Auxin cross-talk: Integration of signalling pathways to control plant development. In: Auxin Molecular Biology (pp. 411–426). Switzerland: Springer.
  • Tao, W., & Verbelen, J.-P. (1996). Switching on and off cell division and cell expansion in cultured mesophyll protoplasts of tobacco. Plant Science, 116, 107–115. doi:10.1016/0168-9452(96)04368-3
  • Twumasi, P., Schel, J. H., Van Ieperen, W., Woltering, E., Van Kooten, O., & Emons, A. M. C., (2009). Establishing in vitro Zinnia elegans cell suspension culture with high tracheary element differentiation. Cell Biology International, 33, 524–533. doi:10.1016/j.cellbi.2009.01.019
  • Van der Zaal, E., Droog, F.N.J., Boot, C.J.M., Hensgens, L.A.M., Hoge, J.H.C., Schilperoort, R.A., & Libbenga, K.R. (1991). Promoters of auxin-induced genes from tobacco can lead to auxin-inducible and root tip-specific expression. Plant Molecular Biology, 16, 983–998. doi:10.1007/BF00016071
  • Vasil, I.K., & Thorpe, T.A. (2013). Plant cell and tissue culture. Berlin: Springer Science & Business Media.
  • Vissenberg, K., Quelo, A. H., Van Gestel, K., Olyslaegers, G., & Verbelen, J. P, (2000). From hormone signal, via the cytoskeleton, to cell growth in single cells of tobacco. Cell Biology International, 24, 343–349. doi:10.1006/cbir.1999.0516
  • Wakasa, Y. (2003). Divergent expression of six expansin genes during apple fruit ontogeny. European Journal of Horticultural Science 68, 253–259.
  • Wallner, S.J., & Nevins, D.J. (1973). Formation and dissociation of cell aggregates in suspension cultures of Paul’s Scarlet Rose. American Journal of Botany, 60, 255–261. doi:10.1002/j.1537-2197.1973.tb10225.x
  • Wang, C., Bowen, J. H., Weir, I. E., Allan, A. C., & Ferguson, I. B., (2001). Heat‐induced protection against death of suspension‐cultured apple fruit cells exposed to low temperature. Plant, Cell & Environment, 24, 1199–1207. doi:10.1046/j.1365-3040.2001.00770.x
  • Wilson, S.A., & Roberts, S.C. (2012). Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules. Plant Biotechnology Journal, 10, 249–268. doi:10.1111/j.1467-7652.2011.00664.x
  • Wismer, P.T., Proctor, J., & Elfving, D. (1995). Benzyladenine affects cell division and cell size during apple fruit thinning. Journal of the American Society for Horticultural Science, 120, 802–807. doi:10.21273/JASHS.120.5.802
  • Xu, J., Dolan, M. C., Medrano, G., Cramer, C. L., & Weathers, P. J.(2012). Green factory: Plants as bioproduction platforms for recombinant proteins. Biotechnology Advances, 30, 1171–1184. doi:10.1016/j.biotechadv.2011.08.020
  • Yao, J.-L., Cohen, D., Atkinson, R., Richardson, K., & Morris, B. (1995). Regeneration of transgenic plants from the commercial apple cultivar Royal Gala. Plant Cell Reports, 14, 407–412. doi:10.1007/BF00234044
  • Zhang, C., Tanabe, K., Tamura, F., Itai, A., & Wang, S. (2005). Spur characteristics, fruit growth, and carbon partitioning in two late-maturing Japanese pear (Pyrus pyrifolia Nakai) cultivars with contrasting fruit size. Journal of the American Society for Horticultural Science, 130, 252–260. doi:10.21273/JASHS.130.2.252
  • Zhang, C., Tanabe, K., Tani, H., Nakajima, H., Mori, M., & Sakuno, E. (2007). Biologically active gibberellins and abscisic acid in fruit of two late-maturing Japanese pear cultivars with contrasting fruit size. Journal of the American Society for Horticultural Science, 132, 452–458. doi:10.21273/JASHS.132.4.452

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.