249
Views
0
CrossRef citations to date
0
Altmetric
Article

Genome-wide identification and expression of CYP71 gene family in response to low-temperature stress in banana

, , , , , , , , , , , , , & show all
Pages 159-177 | Accepted 01 Jul 2022, Published online: 15 Jul 2022

References

  • Babu, P. R., Rao, K. V., & Reddy, V. D. (2013). Structural organization and classification of cytochrome P450 genes in flax (Linum usitatissimum L.). Gene, 513(1), 156–162. https://doi.org/10.1016/j.gene.2012.10.040
  • Bak, S., Tax, F. E., Feldmann, K. A., Galbraith, D. W., & Feyereisen, R. (2001). CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis. The Plant Cell, 13(1), 101–111. https://doi.org/10.1105/tpc.13.1.101
  • Barlier, I., Kowalczyk, M., Marchant, A., Karin, L., Rishikesh, B., Malcolm, B., Goeran, S., & Catherine, B. (2000). The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulator of auxin homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 97(26), 14819–14824. https://doi.org/10.1073/pnas.260502697
  • Chapple, C. (1998). Molecular-genetic analysis of plant cytochrome P450-dependent monooxygenases. Annual Review of Plant Physiology and Plant Molecular Biology, 49(1), 311–343. https://doi.org/10.1146/annurev.arplant.49.1.311
  • D´Hont, A., Denoeud, F., & Wincker, P. (2012). The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature, 488(7410), 213–217. https://doi.org/10.1038/nature11241
  • Davey, M. W., Gudimella, R., Harikrishna, J. A., Sin, L. W., Khalid, N., & Keulemans, J. (2013). A draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter- and intra-specific Musa hybrids. BMC Genomics, 14(1), 683. https://doi.org/10.1186/1471-2164-14-683
  • Feng, X., Lai, Z., Lin, Y., Lai, G., & Lian, C. (2015). Genome-wide identification and characterization of the superoxide dismutase gene family in Musa acuminata cv. Tianbaojiao (AAA group) . BMC Genomics, 16(1), 1–16. https://doi.org/10.1186/s12864-015-2046-7
  • Glawischni, E., Hansen, B. G., Olsen, C. E., & Halkier, B. A. (2004). Camalexin is synthesized from indole-3-acetaldoxime, a key branching point between primary and secondary metabolism in Arabidopsis. Proceedings of the National Academy of Sciences, 101(21), 8245–8250. https://doi.org/10.1073/pnas.0305876101
  • Guo, S. Q., SHU, H. G., & Gong, Y. Y. (2016). Bioinformatics analysis of cytochrome P450 monooxygenase family from artemisia. Agricultural Science & Technology, 17(8), 1813–1819. https://kns.cnki.net/kcms/detail/32.1213.s.20160315.1422.014.html
  • Jiu, S., Xu, Y., Wang, J., Lei, W., Liu, X. J., Sun, W. X., Sabir, I. A., Ma, C., Xu, W. P., Wang, S. P., Abdullah, M., & Zhang, C. X. (2020). The cytochrome P450 monooxygenase inventory of grapevine (Vitis vinifera L.): Genome-wide identification. Evolutionary Characterization and Expression Analysis. Frontiers in Genetics, 11(1), 44. https://doi.org/10.3389/fgene.2020.00044
  • Jun, X. U., Xin-Yu, W., & Wang-Zhen, G. (2015). The cytochrome P450 superfamily: Key players in plant development and defense. Journal of Integrative Agriculture, 14(9), 1673–1686. https://doi.org/10.1016/S2095-3119(14)60980-1
  • Kaifa, W., & Huiqin, C. (2018). Global identification, structural analysis, and expression characterization of cytochrome P450 monooxygenase superfamily in rice. BMC Genomics, 19(1), 35. https://doi.org/10.1186/s12864-017-4425-8
  • Lamb, D. C., Lei, L., Warrilow, A. G., Lepesheva, G. I., Mullins, J. G., Waterman, M. R., & Kelly, S. L. (2009). The first virally encoded cytochrome p450. Journal of Virology, 83(16), 8266–8269. https://doi.org/10.1128/JVI.00289-09
  • Li, X., Zhang, J. B., Song, B., Li, H. P., Xu, H. Q., Qu, B., Dang, F. J., & Liao, Y. C. (2010). Resistance to Fusarium head blight and seedling blight in wheat is associated with activation of a cytochrome P450 gene. Phytopathology®, 100(2), 183–191. https://doi.org/10.1094/PHYTO-100-2-0183
  • Li, D. M., Wang, Y., & Han, K. L. (2012). Recent density functional theory model calculations of drug metabolism by cytochrome P450. Coordination Chemistry Reviews, 256(11–12), 1137–1150. https://doi.org/10.1016/j.ccr.2012.01.016
  • Li, W., Shao, M., Yang, J., Wei, G. Z., Kazunori, O., Hisakazu, Y., & Liu, F. Q. (2013). Oscyp71Z2 involves diterpenoid phytoalexin biosynthesis that contributes to bacterial blight resistance in rice. Plant Science: an International Journal of Experimental Plant Biology, 207(Complete), 98–107. https://doi.org/10.1016/j.plantsci.2013.02.005
  • Li, S., Yu, X., Lei, N., Cheng, Z. H., Zhao, P. J., He, Y. K., Wang, W. Q., & Peng, M. (2017). Genome-wide identification and functional prediction of cold and drought-responsive lncRNAs in cassava. Scientific Reports, 7(1), 1–15. https://doi.org/10.1038/s41598-016-0028-x
  • Li, D., Chen, X. H., & Lai, Z. X. (2019). Research progresses of tropical plant genome. Chinese Journal of Tropical Crops, 40(10), 1875–1888. https://doi.org/10.3969/j.issn.1000-2561.2019.10.001
  • Liu, W. H., CHENG, C. Z., LIN, Y. L., Xu, H., & Lai, Z. G. (2018a). Genome-wide identification and characterization of mRNAs and lncRNAs involved in cold stress in the wild banana (Musa itinerans). PLOS ONE, 13(7), e.0200002. https://doi.org/10.1371/journal.pone.0200002
  • Liu, W. H., CHENG, C. Z., CHEN, F. L., Ni, S. S., Lin, Y. L., & Lai, Z. G. (2018b). High-throughput sequencing of small RNAs revealed the diversified cold-responsive pathways during cold stress in the wild banana (Musa itinerans). Bmc Plant Biology, 18(1), 308–333. https://doi.org/10.1186/s12870-018-1483-2
  • Ma, B., Luo, Y. W., Lin, J., Qi, X. W., Zeng, Q. W., Xiang, Z. H., & He, N. J. (2013). Genome-wide identification and expression analyses of cytochrome P450 genes in mulberry (Morus notabilis). Journal of Integrative Plant Biology, 56(9), 887–56,901. https://doi.org/10.1111/jipb.12141
  • Mikkelsen, M., Hansen, D., Wittstock, C. H., & Halkier, B.A, U. (2000). Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetal-dioxide, a precursor of indole glucosinolates and indole-3-acetic acid. Journal of Biological Chemistry, 275(43), 33712–33717. https://doi.org/10.1074/jbc.M001667200
  • Moore, M. T., & Kröger, R. (2010). Effect of three insecticides and two herbicides on rice (Oryza sativa) seedling germination and growth. Archives of Environmental Contamination and Toxicology, 59(4), 574–581. https://doi.org/10.1007/s00244-010-9519-0
  • Nafisi, M., E, S. I., Hansen, B. G., Fernando, G., Hussam, H., Nour-Eldin, M., N, H. H., Niels, B., Jensen, Jing, L., & Barbara, A. H. (2006). Cytochromes P450 in the biosynthesis of glucosinolates and indole alkaloids. Phytochemistry Reviews: Proceedings of the Phytochemical Society of Europe, 5(2–3), 331–346. https://doi.org/10.1007/s11101-006-9004-6
  • Nelson, D. R., Koymans, L., Kamataki, T., Stegeman, J. J., Feyereisen, R., J, W. D., Waterman, M. R., Gotoh, O., Coon, M. J., Estabrook, R. W., Gunsalus, I. C., & Nebert, D. W. (1996). P450 superfamily: Update on new sequences, gene mapping, accession numbers and no-menclature. Pharmacogenetics, 6(1), 1–42. https://doi.org/10.1097/00008571-199602000-00002
  • Nelson, D. R., Schuler, M. A., Paquette, S. M., Paquette, & Werck-Reichhart, D. (2004). Comparative genomics of rice and Arabidopsis. Analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot. Plant Physiology, 135(2), 756–772. https://doi.org/10.1104/pp.104.039826
  • Nelson, D. R. (2006). Plant cytochrome P450s from moss to poplar. Phytochemistry Reviews, 5(2–3), 193–204. https://doi.org/10.1007/s11101-006-9015-3
  • Nelson, D., & Danièle, W. R. (2011). A P450-centric view of plant evolution. The Plant Journal, 66(1), 194–211. https://doi.org/10.1111/j.1365-313X.2011.04529.x
  • Nelson, D. R. (2011). Progress in tracing the evolutionary paths of cytochrome P450. Biochimica Et Biophysica Acta (BBA) - Proteins and Proteomics, 1814(1), 14–18. https://doi.org/10.1016/j.bbapap.2010.08.008
  • Nie G, Liao Z, Zhong M, Zhou J, Cai J, Liu A, Wang X and Zhang X. (2021). MicroRNA-Mediated Responses to Chromium Stress Provide Insight Into Tolerance Characteristics of Miscanthus sinensisTable_1.XLSXTable_2.XLSXTable_3.XLSXTable_4.XLSXTable_5.XLSX. Front. Plant Sci, 12 10.3389/fpls.2021.66611710.3389/fpls.2021.666117.s00110.3389/fpls.2021.666117.s00210.3389/fpls.2021.666117.s00310.3389/fpls.2021.666117.s00410.3389/fpls.2021.666117.s005
  • Ohkawa, H., Imaishi, H., Shiota, N., Yamada, T., Inui, H., & Ohkawa, Y. (1998). Molecular mechanisms of herbicide resistance with particular emphasis on cytochrome P450 monooxygenases. Plant Biotechnology, 15(4), 173–176. https://doi.org/10.5511/plantbiotechnology.15.173
  • P, H. J., Ortiz, R., Arnaud, E., Crouch, J.H., Ferris, R.S.B., Jones, D., Mateo, N., Picq, Claudine, and Vuylsteke, D., et al. 1997. In Banana and plantain. in Biodiversity in trust.Fuc-cillo. D. Sears & L. Stapleton P, Eds. Conservation and use of plant genetic resources in CGIARcentres, (pp. 67–81). Cambridge University Press.
  • Pandian, B. A., Sathishraj, R., Djanaguiraman, M., Prasad, P. V., & Jugulam, M. (2020). Role of cytochrome P450 enzymes in Plant Stress Response (Vol. 9 (Antioxidants), pp. 454).
  • Paquette, S. M., Jensen, K., & Bak, S. (2009). A web-based resource for the Arabidopsis P450, cytochromes b5, NADPH-cytochrome P450 reductases, and family 1 glycosyltransferases. Phytochemistry, 70(17–18), 1940–1947. https://doi.org/10.1016/j.phytochem.2009.08.024
  • Qin, D., Wu, H., Peng, H., Yao, Y., Ni, Z., Li, Z., Zhou, C., & Sun, Q. (2008). Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat (Triticum aestivum L.) by using Wheat genome array. BMC Genomics, 9(1), 432. https://doi.org/10.1186/1471-2164-9-432
  • Rai, A., Singh, R., Shirke, P., A.Tripathi, R. D., Trivedi, P. K., Chakrabarty, D., & Prasad, M. (2015). Expression of rice CYP450-like gene (os08g01480) in Arabidopsis modulates regulatory network leading to heavy metal and other abiotic stress tolerance. PLoS ONE , 10(9), e0138574. https://doi.org/10.1371/journal.pone.0138574
  • Ralston, L., Kwon, S. T., Schoenbeck, M., Jennifer, R., David, J. S., Robert, M. C., & Joe, C. (2001). Cloning, heterologous expression, and functional characterization of 5-epi-aristolochene-1,3-dihydroxylase from tobacco (Nicotiana tabacum). Archives of Biochemistry and Biophysics, 393(2), 222–235. https://doi.org/10.1006/abbi.2001.2483
  • Schuler, M. A. (1996a). The role of cytochrome P450 monooxygenases in plant-insect interactions. Plant Physiology, 112(4), 1411–1419. https://doi.org/10.1104/pp.112.4.1411
  • Schuler, M. A. (1996b). Plant cytochrome P450 monooxygenases. Critical Reviews in Plant Sciences, 15(3), 235–284. https://doi.org/10.1080/07352689609701942
  • Tamiru, M. U., Takagi, J. R., Abe, H., Yoshida, A., Undan, K., Natsume, J. Q., Uemura, S., Saitoh, A., Matsumura, H., Takao, Y., & Ryohei, T. (2015). A cytochrome P450, OsDSS1, is involved in growth and drought stress responses in rice (Oryza sativa L.). Plant Molecular Biology, 88(1–2), 85–99. https://doi.org/10.1007/s11103-015-0310-5
  • Tao, X., Wang, M. X., Dai, Y., Wang, Y., Fan, Y. F., Mao, P., & Ma, X. R. (2017). Identification and expression profile of CYPome in perennial ryegrass and tall fescue in response to temperature stress. Frontiers in Plant Science, 8(1) , 1519. https://doi.org/10.3389/fpls.2017.01519
  • Wang, P., Ma, L., Li, Y., Wang, S., Li, L., & Yang, R. (2017). Transcriptome analysis reveals sunflower cytochrome P450 CYP93A1 responses to high salinity treatment at the seedling stage. Genes & Genomics, 39(6), 581–591. https://doi.org/10.1007/s13258-017-0523-x
  • Xu, W., Bak, S., Decker, A., Suzanne, M., Paquetteb, R., & David, W. (2001). Microarray-based analysis of gene expression in extensive gene families: The cytochrome P450 gene superfamily of Arabidopsis thaliana. Gene, 272(1–2), 61–74. https://doi.org/10.1016/S0378-1119(01)00516-9
  • XU, J., WANG, X. Y., & Guo, W. Z. (2015). The cytochrome P450 superfamily: Key players in plant development and defense. Journal of Integrative Agriculture, 14(9), 1673–1686. https://doi.org/10.1016/S2095-3119(14)60980-1
  • Yamada, T., Kambara, Y., Imaishi, H., & Ohkawa, H. (2000). Molecular cloning of novel cytochrome P450 species induced by chemical treatments in cultured tobacco cells. Pesticide Biochemistry and Physiology, 68(1), 11–25. https://doi.org/10.1006/pest.2000.2496
  • Yang, Q., Wu, J., Li, C., Wei, Y., Sheng, Q., Hu, C., Kuang, R., Huang, Y., Peng, X., McCardle, J., Chen, W., Yang, Y., Rose, J., Zhang, S., & Yi, G. (2012). Quantitative proteomic analysis reveals that antioxidation mechanisms contribute to cold tolerance in plantain (Musa paradisiaca L., ABB Group) Seedlings. Molecular & Cellular Proteomics, 30(12), 1853–1869. https://doi.org/10.1074/mcp.M112.022079
  • Yang, Q. S., Gao, J., He, W. D., Dou, T. X., Ding, L. J., Wu, J. H., Li, C. Y., Peng, X. X., Zhang, S., & Yi, G. J. (2015). Comparative transcriptomics analysis reveals the difference of critical gene expression between banana and plantain in response to cold stress. BMC Genomics, 16(1), 1–18. https://doi.org/10.1186/s12864-015-1551-z

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.